0

0

Python画ROC曲线和AUC值计算(附代码)

烟雨青岚

烟雨青岚

发布时间:2020-06-19 13:01:54

|

7296人浏览过

|

来源于CSDN

转载

Python画ROC曲线和AUC值计算(附代码)

前言

ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC。

AUC介绍

AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。

AUC计算

AUC的计算分为下面三个步骤:

1、计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)2、根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点3、将坐标点连成曲线之后计算其曲线下面积,就是AUC的值

直接上python代码

#! -*- coding=utf-8 -*-import pylab as pl
from math import log,exp,sqrt
 
 
evaluate_result="you file path"db = [] #[score,nonclk,clk]pos, neg = 0, 0
with open(evaluate_result,'r') as fs: for line in fs:
 nonclk,clk,score = line.strip().split('\t')
 nonclk = int(nonclk)
 clk = int(clk)
 score = float(score)
 db.append([score,nonclk,clk])
 pos += clk
 neg += nonclk
  
  
 
db = sorted(db, key=lambda x:x[0], reverse=True)
 #计算ROC坐标点xy_arr = []tp, fp = 0., 0. 
for i in range(len(db)):
 tp += db[i][2]
 fp += db[i][1]
 xy_arr.append([fp/neg,tp/pos])
 #计算曲线下面积auc = 0. 
prev_x = 0for x,y in xy_arr: if x != prev_x:
 auc += (x - prev_x) * y
 prev_x = x
 
print "the auc is %s."%auc
 x = [_v[0] for _v in xy_arr]
y = [_v[1] for _v in xy_arr]
pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
pl.xlabel("False Positive Rate")
pl.ylabel("True Positive Rate")
pl.plot(x, y)# use pylab to plot x and y
pl.show()# show the plot on the screen

其格式为:

立即学习Python免费学习笔记(深入)”;

nonclk \t clk \t score

其中:
1、nonclick:未点击的数据,可以看做负样本的数量
2、clk:点击的数量,可以看做正样本的数量
3、score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量
运行的结果为:

fae428ceeb4826755c71569c58f117b.png

Rustic AI
Rustic AI

AI驱动的创意设计平台

下载

如果本机没安装pylab可以直接注释依赖以及画图部分
注意
上面贴的代码:
1、只能计算二分类的结果(至于二分类的标签随便处理)
2、上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计算
非常感谢你的阅读
大学的时候选择了自学python,工作了发现吃了计算机基础不好的亏,学历不行这是没办法的事,只能后天弥补,于是在编码之外开启了自己的逆袭之路,不断的学习python核心知识,深入的研习计算机基础知识,整理好了,我放在我们的微信公众号《程序员学府》,如果你也不甘平庸,那就与我一起在编码之外,不断成长吧!

其实这里不仅有技术,更有那些技术之外的东西,比如,如何做一个精致的程序员,而不是“屌丝”,程序员本身就是高贵的一种存在啊,难道不是吗?[点击加入]想做你自己想成为高尚人,加油!

感谢大家的阅读,希望大家收益多多。

本文转自:https://blog.csdn.net/adrrry/article/details/106796288

推荐教程:《python教程

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Word 字间距调整方法汇总
Word 字间距调整方法汇总

本专题整合了Word字间距调整方法,阅读下面的文章了解更详细操作。

2

2025.12.24

任务管理器教程
任务管理器教程

本专题整合了任务管理器相关教程,阅读下面的文章了解更多详细操作。

2

2025.12.24

AppleID格式
AppleID格式

本专题整合了AppleID相关内容,阅读专题下面的文章了解更多详细教程。

0

2025.12.24

csgo视频观看入口合集
csgo视频观看入口合集

本专题整合了csgo观看入口合集,阅读下面的文章了知道更多入口地址。

29

2025.12.24

yandex外贸入口合集
yandex外贸入口合集

本专题汇总了yandex外贸入口地址,阅读下面的文章了解更多内容。

58

2025.12.24

添加脚注通用方法
添加脚注通用方法

本专题整合了添加脚注方法合集,阅读专题下面的文章了解更多内容。

1

2025.12.24

重启电脑教程汇总
重启电脑教程汇总

本专题整合了重启电脑操作教程,阅读下面的文章了解更多详细教程。

3

2025.12.24

纸张尺寸汇总
纸张尺寸汇总

本专题整合了纸张尺寸相关内容,阅读专题下面的文章了解更多内容。

5

2025.12.24

Java Spring Boot 微服务实战
Java Spring Boot 微服务实战

本专题深入讲解 Java Spring Boot 在微服务架构中的应用,内容涵盖服务注册与发现、REST API开发、配置中心、负载均衡、熔断与限流、日志与监控。通过实际项目案例(如电商订单系统),帮助开发者掌握 从单体应用迁移到高可用微服务系统的完整流程与实战能力。

1

2025.12.24

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.4万人学习

SciPy 教程
SciPy 教程

共10课时 | 0.9万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号