0

0

将特征转换为正态分布的一种方法示例

王林

王林

发布时间:2023-04-17 14:40:03

|

1603人浏览过

|

来源于51CTO.COM

转载

正态(高斯)分布在机器学习中起着核心作用,线性回归模型中要假设随机误差等方差并且服从正态分布,如果变量服从正态分布,那么更容易建立理论结果。

统计学领域的很大一部分研究都是假设数据是正态分布的,所以如果我们的数据具有是正态分布,那么么则可以获得更好的结果。但是一般情况下我们的数据都并不是正态分布,所以 如果我们能将这些数据转换成正态分布那么对我们建立模型来说是一件非常有帮助的事情。

standard_normal = np.random.normal(0, 1, size=1_000_000)
fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(standard_normal, bins=1000, density=True, fc=(0,0,1,0.4))
axs.set_title('Standard Normal Distribution', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('X', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.grid()

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

将特征转换为正态分布的一种方法示例

如果你正在处理一个密度(大约)呈线性下降的特性(见下图)。

x = np.linspace(0, 1, 1001)
sample = (3 - np.sqrt(9 - 8 * np.random.uniform(0, 1, 1_000_000))) / 2fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(sample, bins=1000, density=True, fc=(0,0,1,0.4))
axs.scatter(x, np.full_like(x, 0.01), c=x, cmap=cmap)
axs.set_title('Original Feature Distribution', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('X', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.grid()

将特征转换为正态分布的一种方法示例

要将这个特征转换为具有钟形分布的变量,可能没有那么简单,我如果我使用某种变换将密度最高的左端放到中心,那么中心两侧的其余点怎么办?

如果变换是将点从中间和右边的[0,1]移到均值的任意一边(N(0,1) =0)那么本质上是一个非单调的变换,这不是很好因为那样的话,变换后的特征值就没有什么意义了。虽然我们能够得到一个钟形分布,但是对转换后的值没有意义,排序也不再被保留(见下图3中转换后的特征值的散点图)。

log_transform = lambda ar: np.multiply(1.6 * np.log10(ar+1e-8), np.random.choice((-1, 1), size=ar.size)
fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(standard_normal, bins=1_000, density=True, fc=(0,0,1,0.4), label='Standard Normal')
axs.hist(log_transform(sample), bins=1_000, density=True, fc=(1,0,0,0.4), label='Log Transform')
axs.scatter(log_transform(x), np.full_like(x, 3e-3), c=x, cmap=cmap)
axs.set_xlim(-5, 5)
axs.set_title('Log Transform', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('$pm$1.6log(X)', fontdict=fontdict, fontweight='normal', labelpad=12)*
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.legend()
axs.grid()

将特征转换为正态分布的一种方法示例

特征的密度是单调递减的。目标是使用范围(-∞,∞)的变换来拉伸和压缩不同点周围的[0,1]范围,并且变换空间中每个点的密度应该是N(0,1)所给出的。所以是不是可以尝试使用其他的方法呢?

先看看原始特征的CDF函数:

将特征转换为正态分布的一种方法示例

如果确保变换函数将原始分布的 (i-1)ᵗʰ 和 iᵗʰ 百分位数之间的点映射到 N( 0,1)那会怎么样呢?

将特征转换为正态分布的一种方法示例

g 是我们正在寻找的变换,Φ 是 N(0,1) 的 CDF。

ima.copilot
ima.copilot

腾讯大混元模型推出的智能工作台产品,提供知识库管理、AI问答、智能写作等功能

下载

但是这可能只是最终目标只是这种方法的延伸。 因为我们的方法不应限制在由百分位数定义的区间,而是想要一个函数,它可以满足上面原始CDF公式中的每个区间的要求。于是就得到了下面的公式

将特征转换为正态分布的一种方法示例

如果你对概率论比较熟悉,那么回想一下概率的特征在于它的分布函数(Jean Jacod 和 Philip Protter 的 Probability Essentials 中的定理 7.1)。我将把自己限制在了单调递增函数的空间中。

将特征转换为正态分布的一种方法示例

单调递增函数的约束假设集,如果我能找到一个函数使变换后的特征的CDF等于N(0,1)的CDF,那不就可以了吗。这与上面公式中的单调递增约束一起,得到了下面的公式。

将特征转换为正态分布的一种方法示例

将函数g变换为Φ的逆函数和F的复合函数

下面看看结果,我们使用上面总结的结果来转的特征,使其具有标准正态分布。

fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.hist(standard_normal, bins=1_000, density=True, fc=(0,0,1,0.4), label='Standard Normal')
axs.hist(scipy.stats.norm.ppf(1.5*sample - 0.5*(sample**2)), bins=1000, density=True, fc=(1,0,0,0.4), label='Equation 4 Transform')
axs.scatter(norm.ppf(1.5*x - 0.5*(x**2)), np.full_like(x, 3e-3), c=x, cmap=cmap)
axs.set_xlim(-5, 5)
axs.set_title("Transformed Feature's Density", fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('$Phi^{-1}(F$(X))', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('Density', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.legend()
axs.grid()

将特征转换为正态分布的一种方法示例

任何分布(只要它是一个连续分布函数)都可以使用这个方法。但是在使用它之前,还是需要看看用例中使用它是否有意义。

fontdict = {'family':'serif', 'color':'darkgreen', 'size':16}
fig, axs = plt.subplots(1, 1, figsize=(8, 8))
axs.scatter(x, norm.ppf(1.5*x - 0.5*(x**2)), c=x, cmap=cmap)
axs.set_xlim(0, 1)
axs.set_title('Transform', fontdict=fontdict, fontweight='bold', pad=12)
axs.set_xlabel('X', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.set_ylabel('$Phi^{-1}(F$(X))', fontdict=fontdict, fontweight='normal', labelpad=12)
axs.grid()

将特征转换为正态分布的一种方法示例

我们的转函数看起来是这样的,这个过程给出了如图5所示的转换。需要注意的是:这个特征取值接近 0 或接近 1 时输出波动大,但当值接近 0.5 时输出波动小。 如果不是这种情况会给模型提供对特征的错误解释,可能会损害其性能。

相关专题

更多
excel制作动态图表教程
excel制作动态图表教程

本专题整合了excel制作动态图表相关教程,阅读专题下面的文章了解更多详细教程。

20

2025.12.29

freeok看剧入口合集
freeok看剧入口合集

本专题整合了freeok看剧入口网址,阅读下面的文章了解更多网址。

65

2025.12.29

俄罗斯搜索引擎Yandex最新官方入口网址
俄罗斯搜索引擎Yandex最新官方入口网址

Yandex官方入口网址是https://yandex.com;用户可通过网页端直连或移动端浏览器直接访问,无需登录即可使用搜索、图片、新闻、地图等全部基础功能,并支持多语种检索与静态资源精准筛选。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

197

2025.12.29

python中def的用法大全
python中def的用法大全

def关键字用于在Python中定义函数。其基本语法包括函数名、参数列表、文档字符串和返回值。使用def可以定义无参数、单参数、多参数、默认参数和可变参数的函数。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

python改成中文版教程大全
python改成中文版教程大全

Python界面可通过以下方法改为中文版:修改系统语言环境:更改系统语言为“中文(简体)”。使用 IDE 修改:在 PyCharm 等 IDE 中更改语言设置为“中文”。使用 IDLE 修改:在 IDLE 中修改语言为“Chinese”。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

16

2025.12.29

C++的Top K问题怎么解决
C++的Top K问题怎么解决

TopK问题可通过优先队列、partial_sort和nth_element解决:优先队列维护大小为K的堆,适合流式数据;partial_sort对前K个元素排序,适用于需有序结果且K较小的场景;nth_element基于快速选择,平均时间复杂度O(n),效率最高但不保证前K内部有序。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

12

2025.12.29

php8.4实现接口限流的教程
php8.4实现接口限流的教程

PHP8.4本身不内置限流功能,需借助Redis(令牌桶)或Swoole(漏桶)实现;文件锁因I/O瓶颈、无跨机共享、秒级精度等缺陷不适用高并发场景。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

134

2025.12.29

抖音网页版入口在哪(最新版)
抖音网页版入口在哪(最新版)

抖音网页版可通过官网https://www.douyin.com进入,打开浏览器输入网址后,可选择扫码或账号登录,登录后同步移动端数据,未登录仅可浏览部分推荐内容。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

63

2025.12.29

快手直播回放在哪看教程
快手直播回放在哪看教程

快手直播回放需主播开启功能才可观看,主要通过三种路径查看:一是从“我”主页进入“关注”标签再进主播主页的“直播”分类;二是通过“历史记录”中的“直播”标签页找回;三是进入“个人信息查阅与下载”里的“直播回放”选项。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

18

2025.12.29

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
CSS3 教程
CSS3 教程

共18课时 | 4.1万人学习

PostgreSQL 教程
PostgreSQL 教程

共48课时 | 6.2万人学习

Git 教程
Git 教程

共21课时 | 2.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号