0

0

如何在Python中创建稀疏矩阵?

PHPz

PHPz

发布时间:2023-09-05 15:49:06

|

1690人浏览过

|

来源于tutorialspoint

转载

如何在python中创建稀疏矩阵?

在本文中,我们将向您展示什么是稀疏矩阵以及如何在 python 中创建稀疏矩阵。

什么是稀疏矩阵?

稀疏矩阵是大多数元素为0的矩阵。也就是说,矩阵仅包含少数位置的数据。稀疏矩阵消耗的大部分内存都是由零组成的。

例如 -

M = [
   [1, 0, 0, 0],
   [0, 0, 3, 0],
   [0, 0, 0, 0],
   [0, 0, 0, 2]
]

使用二维数组来表示稀疏矩阵会浪费大量内存,因为矩阵中的零在大多数情况下都是无用的。因此,我们不是将零与非零元素一起保存,而是只存储非零元素。这涉及使用三元组来存储非零元素(行、列、值)。

立即学习Python免费学习笔记(深入)”;

自然语言处理(NLP)和数据编码都大量使用稀疏矩阵。如果大多数矩阵元素为 0,则存储所有矩阵元素的存储成本会很高。

这是因为我们只有几个数据点,并且大部分存储空间都被冗余零占用。

稀疏矩阵的优点

以下是使用稀疏矩阵而不是简单矩阵的两个主要优点 -

  • 存储 - 因为非零元素比零少,所以可以使用更少的内存来单独存储这些元素。

  • 计算时间 - 通过逻辑创建仅遍历非零元素的数据结构可以节省计算时间。

如何在Python中创建稀疏矩阵?

Python 中的 SciPy 提供了使用各种数据结构创建稀疏矩阵以及将稠密矩阵转换为稀疏矩阵的工具。

在Python中,我们可以使用以下函数创建稀疏矩阵 -

  • csr_matrix() 函数 - 以压缩稀疏行格式创建稀疏矩阵,

  • csc_matrix() 函数 - 以压缩稀疏列格式创建稀疏矩阵。,,

方法1.使用csr_matrix()函数创建稀疏矩阵

它以压缩稀疏格式创建稀疏矩阵。

语法

scipy.sparse.csr_matrix(shape=None, dtype=None)

参数

  • shape - 它是矩阵的形状

  • dtype - 它是矩阵的数据类型

算法(步骤)

以下是执行所需任务所需遵循的算法/步骤 -

  • 使用 import 关键字,导入带有别名 (np) 的 numpy 模块。

  • 使用 import 关键字,从 scipy 模块导入 csr_matrix 函数。

  • 使用csr_matrix()函数创建int数据类型的3 * 3稀疏矩阵(row格式)并使用toarray转换为数组() 函数。

  • 打印生成的稀疏矩阵。

    OpenArt
    OpenArt

    在线AI绘画艺术图片生成器工具

    下载

示例

以下程序使用 csr_matrix() 函数返回稀疏矩阵 (3x3) -

# importing numpy module with an alias name
import numpy as np

# importing csr_matrix function from scipy module
from scipy.sparse import csr_matrix

# Using csr_matrix function to create a 3 * 3 sparse matrix of int datatype
# and converting into array
sparse_matrix = csr_matrix((3, 3), dtype = np.int8).toarray()

# printing the resultant sparse matrix
print("The resultant sparse matrix:\n", sparse_matrix)

输出

执行时,上述程序将生成以下输出 -

The resultant sparse matrix:
 [[0 0 0]
 [0 0 0]
 [0 0 0]]

方法 2. 使用给定 Numpy 数组的 csr_matrix() 函数创建稀疏矩阵

算法(步骤)

以下是执行所需任务所需遵循的算法/步骤 -

  • 使用 import 关键字,导入带有别名 (np) 的 numpy 模块。

  • 使用 import 关键字,从 scipy 模块导入 csr_matrix 函数。

  • 使用numpy.array()函数创建数组(返回一个ndarray。ndarray是满足给定要求的数组对象)

示例

# importing numpy module with alias name
import numpy as np

# importing csr_matrix function from scipy module
from scipy.sparse import csr_matrix

# Giving rows and columns values
rows = np.array([0, 1, 0, 2, 1, 1])
columns = np.array([1, 0, 0, 2, 1, 2])

# Giving array data
arrayData = np.array([1, 3, 2, 5, 7, 6])

# Using csr_matrix function to create a 3x3 sparse matrix
sparse_matrix = csr_matrix((arrayData, (rows, columns)),
   shape = (3, 3)).toarray()

# print the resultant sparse matrix
print("The resultant sparse matrix:\n", sparse_matrix)

输出

执行时,上述程序将生成以下输出 -

The resultant sparse matrix:
 [[2 1 0]
 [3 7 6]
 [0 0 5]]

方法 3.使用 csc_matrix() 函数创建稀疏矩阵

它以压缩稀疏列格式创建稀疏矩阵。

语法

scipy.sparse.csc_matrix(shape=None, dtype=None)

参数

  • shape - 它是矩阵的形状

  • dtype - 它是矩阵的数据类型

算法

以下是执行所需任务所需遵循的算法/步骤 -

  • 使用 import 关键字,导入带有别名 (np) 的 numpy 模块。

  • 使用 import 关键字,从 scipy 模块导入 csc_matrix 函数。

  • 使用csc_matrix()函数创建int数据类型的3 * 3稀疏矩阵(格式)并使用toarray转换为数组() 函数。

  • 打印生成的稀疏矩阵。

示例

以下程序使用 csc_matrix() 函数以列格式返回稀疏矩阵 (3x3) -

# importing numpy module with an alias name
import numpy as np

# importing csc_matrix function from scipy module
from scipy.sparse import csc_matrix

# Using csc_matrix function to create a 3 * 3 sparse matrix of int datatype
# and converting into array
sparse_matrix = csc_matrix((3, 3), dtype = np.int8).toarray()

# printing the resultant sparse matrix
print("The resultant sparse matrix:\n", sparse_matrix)

输出

执行时,上述程序将生成以下输出 -

The resultant sparse matrix:
 [[0 0 0]
 [0 0 0]
 [0 0 0]]

方法 4. 使用给定 Numpy 数组的 csc_matrix() 函数创建稀疏矩阵

示例

以下程序使用 csc_matrix() 函数以整数列格式返回稀疏矩阵 (3x3) -

import numpy as np
# importing csc_matrix function from scipy module
from scipy.sparse import csc_matrix

# Giving rows and columns values
rows = np.array([0, 1, 0, 2, 1, 1])
columns = np.array([1, 0, 0, 2, 1, 2])

# Giving array data
arrayData = np.array([1, 3, 2, 5, 7, 6])

# Using csc_matrix function to create a 3x3 sparse matrix in column format
sparse_matrix = csc_matrix((arrayData, (rows, columns)),
   shape = (3, 3)).toarray()

# print the resultant sparse matrix
print("The resultant sparse matrix:\n", sparse_matrix)

输出

执行时,上述程序将生成以下输出 -

The resultant sparse matrix:
 [[2 1 0]
 [3 7 6]
 [0 0 5]]

结论

在本教程中,我们学习了四种在 Python 中生成稀疏矩阵的不同方法。我们还学习了如何从 numpy 数组生成稀疏矩阵。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

相关标签:

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

43

2026.01.16

全民K歌得高分教程大全
全民K歌得高分教程大全

本专题整合了全民K歌得高分技巧汇总,阅读专题下面的文章了解更多详细内容。

84

2026.01.16

C++ 单元测试与代码质量保障
C++ 单元测试与代码质量保障

本专题系统讲解 C++ 在单元测试与代码质量保障方面的实战方法,包括测试驱动开发理念、Google Test/Google Mock 的使用、测试用例设计、边界条件验证、持续集成中的自动化测试流程,以及常见代码质量问题的发现与修复。通过工程化示例,帮助开发者建立 可测试、可维护、高质量的 C++ 项目体系。

24

2026.01.16

java数据库连接教程大全
java数据库连接教程大全

本专题整合了java数据库连接相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.15

Java音频处理教程汇总
Java音频处理教程汇总

本专题整合了java音频处理教程大全,阅读专题下面的文章了解更多详细内容。

16

2026.01.15

windows查看wifi密码教程大全
windows查看wifi密码教程大全

本专题整合了windows查看wifi密码教程大全,阅读专题下面的文章了解更多详细内容。

56

2026.01.15

浏览器缓存清理方法汇总
浏览器缓存清理方法汇总

本专题整合了浏览器缓存清理教程汇总,阅读专题下面的文章了解更多详细内容。

16

2026.01.15

ps图片相关教程汇总
ps图片相关教程汇总

本专题整合了ps图片设置相关教程合集,阅读专题下面的文章了解更多详细内容。

9

2026.01.15

ppt一键生成相关合集
ppt一键生成相关合集

本专题整合了ppt一键生成相关教程汇总,阅读专题下面的的文章了解更多详细内容。

26

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 3.4万人学习

Django 教程
Django 教程

共28课时 | 3.2万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.2万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号