0

0

深入分析Pytorch核心要点,CNN解密!

王林

王林

发布时间:2024-01-04 19:18:16

|

1504人浏览过

|

来源于51CTO.COM

转载

哈喽,我是小壮!

初学者对于创建卷积神经网络(CNN)可能不太熟悉,下面我们以一个完整的案例来进行说明。

CNN是一种广泛应用于图像分类、目标检测、图像生成等任务的深度学习模型。它通过卷积层和池化层自动提取图像的特征,并通过全连接层进行分类。这种模型的关键在于利用卷积和池化的操作,有效地捕捉图像中的局部特征,并通过多层网络进行组合,从而实现对图像的高级特征提取和分类。

原理

1.卷积层(Convolutional Layer):

卷积层通过卷积操作来提取输入图像中的特征。这个操作涉及一个可学习的卷积核,它在输入图像上滑动并计算滑动窗口下的点积。这个过程有助于提取局部特征,从而增强网络对平移不变性的感知能力。

公式:

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

突破Pytorch核心点,CNN !!!

其中,x是输入,w是卷积核,b是偏置。

2.池化层(Pooling Layer):

池化层是一种常用的降维技术,其作用是减小数据的空间维度,从而降低计算量,并提取出最显著的特征。其中,最大池化是一种常见的池化方式,它会在每个窗口中选择最大的值作为代表。通过最大池化,我们可以在保留重要信息的同时,减少数据的复杂度,提高模型的计算效率。

公式(最大池化):

WowTo
WowTo

用AI建立视频知识库

下载

突破Pytorch核心点,CNN !!!

3.全连接层(Fully Connected Layer):

全连接层在神经网络中扮演着重要的角色,它将卷积和池化层提取的特征映射连接到输出类别。全连接层的每个神经元都与前一层的所有神经元相连,这样可以实现特征的综合和分类。

实战步骤和详解

1.步骤

  • 导入必要的库和模块。
  • 定义网络结构:使用nn.Module定义一个继承自它的自定义神经网络类,定义卷积层、激活函数、池化层和全连接层。
  • 定义损失函数和优化器。
  • 加载和预处理数据。
  • 训练网络:使用训练数据迭代训练网络参数。
  • 测试网络:使用测试数据评估模型性能。

2.代码实现

import torchimport torch.nn as nnimport torch.optim as optimfrom torchvision import datasets, transforms# 定义卷积神经网络类class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()# 卷积层1self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)self.relu = nn.ReLU()self.pool = nn.MaxPool2d(kernel_size=2, stride=2)# 卷积层2self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)# 全连接层self.fc1 = nn.Linear(32 * 7 * 7, 10)# 输入大小根据数据调整def forward(self, x):x = self.conv1(x)x = self.relu(x)x = self.pool(x)x = self.conv2(x)x = self.relu(x)x = self.pool(x)x = x.view(-1, 32 * 7 * 7)x = self.fc1(x)return x# 定义损失函数和优化器net = SimpleCNN()criterion = nn.CrossEntropyLoss()optimizer = optim.Adam(net.parameters(), lr=0.001)# 加载和预处理数据transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))])train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)# 训练网络num_epochs = 5for epoch in range(num_epochs):for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad()outputs = net(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()if (i+1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()}')# 测试网络net.eval()with torch.no_grad():correct = 0total = 0for images, labels in test_loader:outputs = net(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalprint('Accuracy on the test set: {}%'.format(100 * accuracy))

这个示例展示了一个简单的CNN模型,使用MNIST数据集进行训练和测试。

接下来,咱们添加可视化步骤,更直观地了解模型的性能和训练过程。

可视化

1.导入matplotlib

import matplotlib.pyplot as plt

2.在训练过程中记录损失和准确率:

在训练循环中,记录每个epoch的损失和准确率。

# 在训练循环中添加以下代码train_loss_list = []accuracy_list = []for epoch in range(num_epochs):running_loss = 0.0correct = 0total = 0for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad()outputs = net(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()if (i+1) % 100 == 0:print(f'Epoch [{epoch+1}/{num_epochs}], Step [{i+1}/{len(train_loader)}], Loss: {loss.item()}')epoch_loss = running_loss / len(train_loader)accuracy = correct / totaltrain_loss_list.append(epoch_loss)accuracy_list.append(accuracy)

3.可视化损失和准确率:

# 在训练循环后,添加以下代码plt.figure(figsize=(12, 4))# 可视化损失plt.subplot(1, 2, 1)plt.plot(range(1, num_epochs + 1), train_loss_list, label='Training Loss')plt.title('Training Loss')plt.xlabel('Epochs')plt.ylabel('Loss')plt.legend()# 可视化准确率plt.subplot(1, 2, 2)plt.plot(range(1, num_epochs + 1), accuracy_list, label='Accuracy')plt.title('Accuracy')plt.xlabel('Epochs')plt.ylabel('Accuracy')plt.legend()plt.tight_layout()plt.show()

这样,咱们就可以在训练过程结束后看到训练损失和准确率的变化。

导入代码后,大家可以根据需要调整可视化的内容和格式。

相关专题

更多
pytorch是干嘛的
pytorch是干嘛的

pytorch是一个基于python的深度学习框架,提供以下主要功能:动态图计算,提供灵活性。强大的张量操作,实现高效处理。自动微分,简化梯度计算。预构建的神经网络模块,简化模型构建。各种优化器,用于性能优化。想了解更多pytorch的相关内容,可以阅读本专题下面的文章。

432

2024.05.29

Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习
Python AI机器学习PyTorch教程_Python怎么用PyTorch和TensorFlow做机器学习

PyTorch 是一种用于构建深度学习模型的功能完备框架,是一种通常用于图像识别和语言处理等应用程序的机器学习。 使用Python 编写,因此对于大多数机器学习开发者而言,学习和使用起来相对简单。 PyTorch 的独特之处在于,它完全支持GPU,并且使用反向模式自动微分技术,因此可以动态修改计算图形。

23

2025.12.22

Java JVM 原理与性能调优实战
Java JVM 原理与性能调优实战

本专题系统讲解 Java 虚拟机(JVM)的核心工作原理与性能调优方法,包括 JVM 内存结构、对象创建与回收流程、垃圾回收器(Serial、CMS、G1、ZGC)对比分析、常见内存泄漏与性能瓶颈排查,以及 JVM 参数调优与监控工具(jstat、jmap、jvisualvm)的实战使用。通过真实案例,帮助学习者掌握 Java 应用在生产环境中的性能分析与优化能力。

19

2026.01.20

PS使用蒙版相关教程
PS使用蒙版相关教程

本专题整合了ps使用蒙版相关教程,阅读专题下面的文章了解更多详细内容。

61

2026.01.19

java用途介绍
java用途介绍

本专题整合了java用途功能相关介绍,阅读专题下面的文章了解更多详细内容。

87

2026.01.19

java输出数组相关教程
java输出数组相关教程

本专题整合了java输出数组相关教程,阅读专题下面的文章了解更多详细内容。

39

2026.01.19

java接口相关教程
java接口相关教程

本专题整合了java接口相关内容,阅读专题下面的文章了解更多详细内容。

10

2026.01.19

xml格式相关教程
xml格式相关教程

本专题整合了xml格式相关教程汇总,阅读专题下面的文章了解更多详细内容。

13

2026.01.19

PHP WebSocket 实时通信开发
PHP WebSocket 实时通信开发

本专题系统讲解 PHP 在实时通信与长连接场景中的应用实践,涵盖 WebSocket 协议原理、服务端连接管理、消息推送机制、心跳检测、断线重连以及与前端的实时交互实现。通过聊天系统、实时通知等案例,帮助开发者掌握 使用 PHP 构建实时通信与推送服务的完整开发流程,适用于即时消息与高互动性应用场景。

19

2026.01.19

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号