综合介绍支持向量机(SVM)算法

王林
发布: 2024-01-24 14:15:05
转载
1240人浏览过

支持向量机(svm)算法综述

支持向量机(SVM)是一种强大且适应性强的监督学习算法,用于异常值检测、回归和分类任务。在高维领域尤其有效,因此广泛应用于分类任务。

支持向量机(SVM)的主要目的是将数据集划分为大量类,以发现最大边际超平面(MMH),这可以分两步完成:

第一步:支持向量机最初将迭代构建最能区分类别的超平面。

第二步:然后它将选择最能分离类的超平面。

超平面的维度与特征的数量有关。当特征数量为2时,超平面是一条线。当特征数量为3时,超平面变为二维平面。

为了构造超平面,支持向量机(SVM)利用极值向量作为支持向量。SVM的目标是找到一个具有较大边距的理想超平面,在n维空间中将不同类别的样本进行离散化。

Python实现支持向量机(SVM)分类

支持向量机(SVM)重要原则

1、支持向量-离超平面最近的数据点称为支持向量。可以使用支持向量来确定分隔线。

2、超平面-将一组项目划分为多个类别的空间或决策平面称为超平面。

3、边距-不同类最近数据点上两条线之间的距离。

4、最大边距-理想的超平面是具有最大边距的超平面。

支持向量机(SVM)内核

支持向量机内核是一个函数,它采用低维输入空间并将其转换为高维空间,即将不可分离问题转换为可分离问题。它主要用于非线性分离问题。简单地说,内核会进行一些极其复杂的数据转换,然后根据定义的标签或输出找出分离数据的过程。

支持向量机(SVM)的优点

1、在高维情况下有效

2、内存效率很高,因为它使用决策函数中称为支持向量的训练点子集

3、可以为决策函数指定不同的内核函数,并且可以指定自定义内核

以上就是综合介绍支持向量机(SVM)算法的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
相关标签:
来源:网易伏羲网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号