0

0

混淆矩阵与 ROC 曲线:何时使用哪个进行模型评估

betcha

betcha

发布时间:2024-09-05 11:25:00

|

998人浏览过

|

来源于DZone

原创

必须在机器学习和数据科学中评估模型性能,才能提出可靠、准确且高效的模型来进行任何类型的预测。一些常用的工具是混淆矩阵和 roc 曲线。两者都有不同的目的,准确了解何时使用它们对于稳健模型评估至关重要。在本博客中,我们将详细介绍这两种工具,进行比较,最后提供有关何时在模型评估中使用这两种工具的指南。

thumbnail.jpg

必须在机器学习和数据科学中评估模型性能,才能提出可靠、准确且高效的模型来进行任何类型的预测。一些常用的工具是混淆矩阵和 ROC 曲线。两者都有不同的目的,准确了解何时使用它们对于稳健模型评估至关重要。在本博客中,我们将详细介绍这两种工具,进行比较,最后提供有关何时在模型评估中使用这两种工具的指导。

了解混淆矩阵

混淆矩阵是一个表格用于可视化分类模型的执行情况。一般来说,它将模型的预测分为四类:

  1. True Positives (TP):模型正确预测正类。

  2. True Negatives (TN):模型正确预测负类。

  3. False Positives (FP):模型错误预测正类。

  4. False Negatives (FN):模型错误地预测了负类; II 类错误。

在二元分类的情况下,可以将它们设置在 2x2 矩阵中;在多类分类的情况下,它们被扩展到更大的矩阵。 

从混淆矩阵得出的关键指标

  • 准确度:(TP TN) / (TP TN FP FN)

  • 精度:TP / (TP FP)

  • 召回率(灵敏度):TP / (TP FN)

  • F1 分数:2(精度 *召回)/(精确召回)

何时使用混淆矩阵

尤其是当您想要详细了解分类结果时,请使用混淆矩阵。它将为您提供对其在类中表现的细粒度分析,更具体地说,是模型的弱点,例如高误报。

  • 类不平衡数据集:准确率、召回率和 F1 分数是可以从混淆矩阵导出的一些指标。当您处理类别不平衡的情况时,这些指标会派上用场。它们真实地表明了模型性能与准确性的比较。

  • 二元和多类分类问题:混淆矩阵在二元分类问题中日常使用。尽管如此,它仍然可以很容易地推广到估计在多个类别上训练的模型,成为一种多功能工具。

理解 ROC 曲线

接收器操作特征 (ROC) 曲线是一个图表,说明二元分类器系统在区分阈值变化时的表现如何。应通过绘制不同阈值设置下的真阳性率与假阳性率来创建 ROC 曲线。

  • 真阳性率,召回率:TP / (TP FN)

  • 误报率 (FPR):FP / (FP TN) 

ROC 曲线下面积 (AUC-ROC) 通常用作汇总度量衡量模型区分正类和负类的能力。 AUC 为 1 对应于完美模型; AUC 为 0.5 对应于没有判别力的模型。

何时使用 ROC 曲线

ROC 曲线在以下场景中特别有用:

  • 二元分类器评估 ROC 曲线特定于二元分类任务,因此不能直接适用于多类问题。

  • 比较多个模型 AUC-ROC 允许比较不同的模型通过单个标量值进行模型,与决策阈值的选择无关。

不同的决策阈值

当您想了解灵敏度时,ROC 曲线会有所帮助-不同阈值下的特异性权衡。 

混淆矩阵与 ROC 曲线:主要差异

1.粒度与概述

  • 混淆矩阵:它提供了模型性能的逐类细分,这对于诊断特定类的模型问题非常有帮助。

    Copy Leaks
    Copy Leaks

    AI内容检测和分级,帮助创建和保护原创内容

    下载
  • ROC 曲线:它给出了模型在所有可能阈值上的判别能力的整体情况,由 AUC 总结。

2.不平衡数据集

  • 混淆矩阵:在类别不平衡的背景下,混淆矩阵中的精度和召回率等指标更能说明问题。

  • ROC 曲线:在数据集高度不平衡的情况下,ROC 曲线的信息量可能较少,因为它没有直接考虑类别分布。

3.适用性

  • 混淆矩阵:不仅可以进行二元分类,还可以进行多类分类。

  • ROC 曲线:主要用于二元分类,尽管可以扩展到多类分类类问题可用

4。阈值依赖性

  • 混淆矩阵:在固定阈值计算指标。

  • ROC 曲线:所有可能阈值的性能可视化。


何时使用哪个

是否需要使用混淆矩阵或 ROC 曲线取决于具体情况和具体需求。

混淆矩阵和 ROC 曲线之间的选择取决于您的具体需求和问题的背景。 

在以下情况下使用混淆矩阵:

  • 您想详细了解模型在每个类别的性能。

  • 您正在处理类别不平衡的数据,需要的不仅仅是准确性指标。

  • 您正在研究多类分类的模型评估。 

在以下情况下使用 ROC 曲线:

  • 您想要比较不同阈值下不同二元分类器的性能。

  • 您对模型区分类别的一般能力感兴趣。

  • 您只需要一个汇总指标 - AUC - 来比较模型.

结论

混淆矩阵和 ROC 曲线对于任何数据科学家的技巧来说都是非常有用的补充。这两种工具提供了对模型性能的不同见解。例如,混淆矩阵擅长提供特定于类的详细指标,这些指标对于准确理解模型的行为至关重要,尤其是对于不平衡的数据集。相比之下,ROC 曲线在捕获所有阈值上的二元分类器的整体辨别力方面做得相当好。掌握每种技术的具体优点和缺点,您将能够根据您当前的特定模型评估需求应用正确的工具,构建更准确、更可靠、更有效的机器学习模型。

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

44

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

58

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

11

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

36

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

21

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号