如何利用多进程加速ONNX模型部署中的图片预处理?

心靈之曲
发布: 2025-03-14 09:06:01
原创
886人浏览过

如何利用多进程加速onnx模型部署中的图片预处理?

利用多进程优化ONNX模型部署中的图片预处理

将PyTorch训练的模型转换为ONNX格式并在生产环境中使用ONNX Runtime进行推理,是常见的部署流程。然而,Python的全局解释器锁(GIL)限制了NumPy和PIL库在图片预处理中的CPU利用率,导致预处理成为性能瓶颈。本文介绍如何通过多进程处理,显著提升ONNX模型部署的图片预处理效率。

PyTorch的DataLoader能够高效利用多进程进行数据预处理,但ONNX Runtime没有直接提供类似机制。为了避免在生产环境中同时依赖PyTorch和ONNX Runtime,我们需要寻求替代方案。

Python的multiprocessing库提供了理想的解决方案。我们可以创建一个函数,接收图像路径列表作为输入,并返回预处理后的图像列表:

Find JSON Path Online
Find JSON Path Online

Easily find JSON paths within JSON objects using our intuitive Json Path Finder

Find JSON Path Online 193
查看详情 Find JSON Path Online
import numpy as np
from PIL import Image

def preprocess_image(image_path):
    # 使用PIL和NumPy进行图像预处理
    img = Image.open(image_path)
    # ... 图像预处理代码 ...  例如:resize, normalization
    preprocessed_image = np.array(img)
    return preprocessed_image
登录后复制

利用multiprocessing.Pool对象,可以轻松地将图像预处理任务分配到多个进程并行执行:

import os
import glob
from multiprocessing import Pool

def parallel_preprocess(image_paths, num_workers):
    with Pool(num_workers) as pool:
        preprocessed_images = pool.map(preprocess_image, image_paths)
    return preprocessed_images

if __name__ == "__main__":
    image_dir = "path/to/your/image/folder"
    image_paths = glob.glob(os.path.join(image_dir, "*.jpg"))  # 替换成你的图片格式

    num_workers = os.cpu_count() # 使用所有CPU核心
    preprocessed_images = parallel_preprocess(image_paths, num_workers)
    # preprocessed_images 现在包含所有预处理后的图像数据
登录后复制

这段代码首先获取图像路径列表,然后使用Pool对象将preprocess_image函数应用于每个图像路径,最后返回所有预处理后的图像。通过调整num_workers参数(例如设置为os.cpu_count()),可以充分利用所有CPU核心,最大限度地提高预处理速度,有效缓解ONNX模型部署中的性能瓶颈。 无需依赖PyTorch DataLoader,即可实现高效的并行图片预处理。

以上就是如何利用多进程加速ONNX模型部署中的图片预处理?的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号