Python生成随机数依赖random模块,提供randint、choice等方法生成整数、浮点数及序列操作;通过seed()可复现随机序列;涉及安全时应使用secrets模块;还可生成正态分布等特定分布随机数。

Python生成随机数的核心,其实就是依赖于它内置的
random
要说在Python里生成随机数,最直接的方式就是引入
random
import random
# 生成一个0.0到1.0之间的随机浮点数
# 比如,你可能需要一个随机的百分比值
float_num = random.random()
print(f"随机浮点数 (0.0-1.0): {float_num}")
# 生成指定范围内的随机整数(包含边界)
# 假设你需要一个1到100之间的随机抽奖号码
int_num = random.randint(1, 100)
print(f"随机整数 (1-100): {int_num}")
# 如果你想要一个指定步长的随机整数,`randrange`会更合适
# 比如,只想生成1到100之间,且是偶数的随机数
even_num = random.randrange(2, 101, 2) # 从2开始,到100结束(不包含101),步长为2
print(f"随机偶数 (2-100): {even_num}")
# 生成指定范围内的随机浮点数(包含边界)
# 比如,模拟一个温度值在20.5到30.0之间
uniform_float = random.uniform(20.5, 30.0)
print(f"随机浮点数 (20.5-30.0): {uniform_float}")
# 从序列中随机选择一个元素
# 比如,从一个列表中随机选出今天的午餐
choices = ["面条", "米饭", "饺子", "沙拉"]
lunch = random.choice(choices)
print(f"今天的随机午餐: {lunch}")
# 随机打乱一个序列
# 比如,洗牌游戏
cards = ['A', 'K', 'Q', 'J', '10', '9', '8', '7', '6', '5', '4', '3', '2']
random.shuffle(cards)
print(f"洗牌后的结果: {cards}")
# 从一个序列中随机抽取K个不重复的元素
# 比如,从班级里随机选出3个同学参加活动
students = ["张三", "李四", "王五", "赵六", "钱七", "孙八"]
selected_students = random.sample(students, 3)
print(f"随机选出的3位同学: {selected_students}")这些方法几乎能覆盖日常开发中绝大多数随机数的需求。我个人觉得,
randint
choice
嗯,这是一个非常实际的问题,尤其是在调试或者科学实验中。有时候我们希望程序每次运行时,虽然生成的是随机数,但它们的序列是完全一样的,这样才能确保实验结果的可复现性。Python的
random
seed()
立即学习“Python免费学习笔记(深入)”;
简单来说,
random.seed()
seed
import random
# 第一次运行,设定一个固定的种子
random.seed(42) # 42只是一个常用的“魔法数字”,你可以用任何整数
print("第一次运行,固定种子:")
print(f"随机整数1: {random.randint(1, 100)}")
print(f"随机整数2: {random.randint(1, 100)}")
# 第二次运行,再次设定相同的种子
random.seed(42)
print("\n第二次运行,再次固定相同种子:")
print(f"随机整数1: {random.randint(1, 100)}")
print(f"随机整数2: {random.randint(1, 100)}")
# 如果不设定种子,或者设定不同的种子
print("\n不设定种子或设定不同种子:")
print(f"随机整数3 (无种子): {random.randint(1, 100)}")
random.seed(100)
print(f"随机整数4 (不同种子): {random.randint(1, 100)}")你会发现,前两次运行的结果是完全一样的。这对于测试、机器学习模型训练的复现等场景至关重要。但话说回来,如果你想要真正的“不可预测”的随机性,比如在密码学应用中,那你就绝对不能使用固定的种子。通常情况下,如果不手动调用
seed()
这个问题问得很好,也是很多人容易混淆的地方。说实话,计算机生成的“随机数”,严格意义上讲,都不是真正的随机数,它们被称为“伪随机数”(Pseudo-Random Numbers)。这是因为它们是通过一个确定性的算法生成的,只要你知道了初始的种子(seed)和算法,你就能预测出接下来的所有“随机数”。你看,这不就和我们上一个问题里说的
seed()
random
但是,有些时候,我们需要的是真正的、不可预测的随机性,尤其是在安全相关的应用中,比如生成密码、加密密钥、会话令牌等。在这种情况下,伪随机数就显得力不从心了,因为攻击者一旦猜测到或获取到种子,你的“随机性”就荡然无存了。
这时候,Python的
secrets
secrets
import secrets
# 生成一个安全的随机整数,通常用于生成令牌、密钥等
# 比如,生成一个长度为16字节的十六进制字符串作为令牌
secure_token = secrets.token_hex(16)
print(f"安全的十六进制令牌: {secure_token}")
# 生成一个随机URL安全文本字符串
secure_url_safe_token = secrets.token_urlsafe(24)
print(f"安全的URL安全令牌: {secure_url_safe_token}")
# 从序列中安全地选择一个元素
# 比如,在认证流程中随机选择一个挑战问题
secure_choices = ["你的宠物名字?", "你母亲的姓氏?", "你第一辆车的品牌?"]
secure_challenge = secrets.choice(secure_choices)
print(f"安全的挑战问题: {secure_challenge}")所以,关键点在于:如果你只是想让程序行为看起来“随机”,
random
secrets
除了之前提到的那些生成均匀分布整数或浮点数的方法,
random
比如,如果你需要模拟一个符合正态分布(高斯分布)的数据,
random.gauss()
random.normalvariate()
import random
# 生成符合正态分布的随机数
# 参数:mu(均值),sigma(标准差)
# 比如,模拟一群人的身高,平均身高170cm,标准差5cm
heights = [random.gauss(170, 5) for _ in range(1000)]
print(f"前5个模拟身高: {heights[:5]}")
# 还有指数分布
# random.expovariate(lambda_),lambda_是1.0除以期望平均值
# 比如,模拟事件发生的时间间隔,平均每10分钟发生一次,那么lambda_就是1/10 = 0.1
event_intervals = [random.expovariate(0.1) for _ in range(1以上就是Python怎么生成一个随机数_Python随机数生成技巧的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号