首先使用scikit-learn实现K-means聚类,通过make_blobs生成300个样本的模拟数据,设置4个簇;接着构建KMeans模型并用fit_predict获得聚类标签;然后用matplotlib可视化聚类结果与簇中心;最后通过肘部法绘制不同K值对应的惯性值,选择拐点确定最优簇数;若特征量纲差异大,需先标准化处理。

在Python中使用K-means算法进行聚类分析非常常见,尤其适用于无监督学习任务。该算法通过将数据划分为K个簇,使得每个数据点归属于离其最近的簇中心,从而实现数据的自动分组。下面介绍如何使用scikit-learn库实现K-means算法,并给出关键步骤和代码示例。
进行K-means聚类前,需要导入常用的科学计算和数据可视化库:
K-means适用于数值型特征数据。可以使用sklearn生成模拟数据来测试算法效果:
这行代码生成了包含300个样本、4个中心的数据集,适合用于聚类演示。
立即学习“Python免费学习笔记(深入)”;
指定簇的数量K(这里设为4),然后拟合模型:
无论做任何事情,都要有一定的方式方法与处理步骤。计算机程序设计比日常生活中的事务处理更具有严谨性、规范性、可行性。为了使计算机有效地解决某些问题,须将处理步骤编排好,用计算机语言组成“序列”,让计算机自动识别并执行这个用计算机语言组成的“序列”,完成预定的任务。将处理问题的步骤编排好,用计算机语言组成序列,也就是常说的编写程序。在Pascal语言中,执行每条语句都是由计算机完成相应的操作。编写Pascal程序,是利用Pasca
4
fit_predict方法会返回每个样本所属的簇标签。
使用matplotlib绘制数据点和簇中心,便于观察聚类效果:
实际应用中K值通常未知,可以通过“肘部法”确定较优的簇数量:
选择“拐点”处的K值作为最佳聚类数。
基本上就这些。只要数据合适,K-means实现起来不复杂但容易忽略标准化和K值选择的问题。如果特征量纲差异大,建议先用StandardScaler进行归一化处理。
以上就是Python中使用K-means算法的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号