0

0

解决 Pandas DataFrame 高度碎片化警告:高效创建多列的策略

碧海醫心

碧海醫心

发布时间:2025-11-27 10:54:26

|

281人浏览过

|

来源于php中文网

原创

解决 Pandas DataFrame 高度碎片化警告:高效创建多列的策略

当在 pandas dataframe 中通过循环或重复赋值创建大量新列时,可能会遇到 `performancewarning: dataframe is highly fragmented` 警告。此警告表明 dataframe 内存布局变得碎片化,导致性能下降。本文将深入探讨此警告的成因,并提供使用 `pd.concat` 方法高效、批量创建新列的专业解决方案,从而避免碎片化并提升数据处理效率。

理解 DataFrame 碎片化警告

PerformanceWarning: DataFrame is highly fragmented 警告通常在您对现有 DataFrame 反复执行列插入操作时出现。在 Pandas 中,DataFrame 的内存布局通常是为连续性访问优化的。当您使用 df['new_col'] = ... 这种方式逐个添加大量新列时,Pandas 可能会在底层执行多次内存重新分配操作。每次重新分配都可能导致数据在内存中的存储不再连续,从而形成“碎片”。

这种碎片化现象会带来两个主要问题:

  1. 性能下降: 内存碎片化会增加数据访问的开销,因为处理器需要花费更多时间来查找和读取非连续存储的数据块。这在处理大型 DataFrame 时尤为明显。
  2. 内存效率降低: 碎片化的内存可能导致实际使用的内存量高于理论值,因为一些小的空闲块可能无法被有效利用。

考虑一个常见场景:从一个包含长字符串的列中,根据不同位置切片并生成数百甚至近千个新列。以下是导致警告的典型代码模式:

import pandas as pd
import numpy as np
import string

# 模拟一个包含长字符串的DataFrame
np.random.seed(0)
df_fragmented = pd.DataFrame({
    "long_string": ["".join(np.random.choice(
        [*string.printable[:62]], size=5000)) for _ in range(10000)]
})

def parse_long_string_fragmented(df):
    # 假设需要从 long_string 中切片出 972 个新列
    # 这是一个简化示例,实际可能需要更多列
    df['a001'] = df['long_string'].str[0:2]
    df['a002'] = df['long_string'].str[2:4]
    df['a003'] = df['long_string'].str[4:13]
    # ... 更多类似的列赋值操作,直到 a972
    df['a972'] = df['long_string'].str[4994:]
    return df

# 调用此函数时,会触发 PerformanceWarning
# result_fragmented = parse_long_string_fragmented(df_fragmented.copy())

上述代码中,每次 df['aXXX'] = ... 都会尝试在现有 DataFrame 中插入新列。当列数非常多时,这种重复的插入操作会显著增加 DataFrame 的碎片化程度,并最终触发 PerformanceWarning。

解决方案:使用 pd.concat 批量创建新列

为了避免 DataFrame 碎片化并提高性能,最佳实践是批量创建所有新列,然后一次性将它们添加到原始 DataFrame 中。pd.concat 函数是实现这一目标的高效工具

AskAI
AskAI

无代码AI模型构建器,可以快速微调GPT-3模型,创建聊天机器人

下载

核心思想是:

  1. 预先定义所有需要切片的起始和结束位置。
  2. 利用 Pandas 的字符串切片功能 (.str[start:end]),为每个新列生成一个 Series。
  3. 将所有这些 Series 收集起来,使用 pd.concat(..., axis=1) 将它们合并成一个新的 DataFrame。
  4. 最后,使用 df.join() 或 pd.concat 将这个包含所有新列的 DataFrame 与原始 DataFrame 合并。

以下是使用 pd.concat 解决上述问题的具体实现:

import pandas as pd
import numpy as np
import string

# 1. 准备示例数据
np.random.seed(0)
df = pd.DataFrame({
    "long_string": ["".join(np.random.choice(
        [*string.printable[:62]], size=5000)) for _ in range(10000)]
})

# 2. 定义切片规则 (使用字典更具可读性)
# 这是一个包含 972 个切片规则的字典
slices_mapper = {f"a{i+1:03d}": (i*2, (i+1)*2) for i in range(249)} # 简化到249个,避免过长的输出
# 假设实际场景中,最后几列可能不是固定长度,例如:
slices_mapper["a250"] = (498, 500) # 模拟最后几列
slices_mapper["a251"] = (500, None) # 从500到字符串末尾

# 3. 定义解析函数,使用 pd.concat
def parse_long_string_optimized(df_input, mapper):
    """
    高效解析长字符串列并创建多个新列,避免 DataFrame 碎片化。

    Args:
        df_input (pd.DataFrame): 包含 'long_string' 列的 DataFrame。
        mapper (dict): 字典,键为新列名,值为元组 (start, end) 表示切片范围。

    Returns:
        pd.DataFrame: 包含原始列和所有新列的 DataFrame。
    """
    # 使用字典推导式为每个新列生成一个 Series,然后通过 pd.concat 沿列方向合并
    new_cols_df = pd.concat(
        {
            col_name: df_input["long_string"].str[start:end]
            for col_name, (start, end) in mapper.items()
        },
        axis=1 # 沿列方向合并
    )

    # 将新生成的 DataFrame 与原始 DataFrame 进行连接
    return df_input.join(new_cols_df)

# 4. 调用优化后的函数
result_optimized = parse_long_string_optimized(df, slices_mapper)

# 打印结果 DataFrame 的信息
print(result_optimized.head())
print(f"\nDataFrame 形状: {result_optimized.shape}")
print(f"DataFrame 列数: {len(result_optimized.columns)}")

代码解释:

  • slices_mapper: 这是一个字典,其键是您希望创建的新列的名称(例如 a001),值是一个元组 (start, end),表示从 long_string 列中切片的起始和结束索引。使用 None 作为结束索引表示切片到字符串末尾。
  • 字典推导式 for col_name, (start, end) in mapper.items(): 这会遍历 slices_mapper 字典中的每一个键值对。对于每个键值对,它会从 df_input["long_string"] 中使用 .str[start:end] 方法提取相应的子字符串,生成一个新的 Pandas Series。
  • pd.concat({...}, axis=1):
    • 花括号 {...} 中的内容创建了一个字典,其中键是新列名,值是对应的 Series。
    • pd.concat 接收一个 Series 或 DataFrame 对象的列表或字典。当传入字典时,字典的键将成为新 DataFrame 的列名。
    • axis=1 参数指示 pd.concat 沿着列方向(水平方向)进行连接,将所有的 Series 组合成一个全新的 DataFrame new_cols_df。
  • df_input.join(new_cols_df): 最后,使用 df.join() 方法将原始 DataFrame df_input 与包含所有新列的 new_cols_df 进行合并。join 方法默认基于索引进行合并,这里两个 DataFrame 的索引是匹配的,因此可以无缝连接。

总结与最佳实践

  • 避免逐列添加: 当需要创建大量新列时,应避免使用 df['new_col'] = ... 这种逐列赋值的方式,因为它会导致 DataFrame 碎片化和性能下降。
  • 优先批量操作: 采用 pd.concat、df.assign() (适用于少量列) 或其他批量操作来一次性创建和添加多列。
  • pd.concat 的优势: 适用于从现有列派生出大量新列的场景,它通过构建一个全新的、非碎片化的 DataFrame 来避免性能问题。
  • 数据结构设计: 在设计数据处理流程时,预先考虑如何高效地生成和整合新数据,以减少不必要的中间操作和内存重分配。
  • 必要时使用 df.copy(): 如果一个 DataFrame 已经变得高度碎片化,并且您需要对其进行大量后续操作,可以考虑使用 new_df = old_df.copy() 来创建一个全新的、内存连续的副本,从而“整理”DataFrame 的内存。但这通常是亡羊补牢,更好的方法是在一开始就避免碎片化。

通过采纳 pd.concat 这种批量处理策略,您可以显著提升 Pandas 数据处理的效率和稳定性,尤其是在处理大规模数据集和复杂特征工程任务时。

相关专题

更多
Python 时间序列分析与预测
Python 时间序列分析与预测

本专题专注讲解 Python 在时间序列数据处理与预测建模中的实战技巧,涵盖时间索引处理、周期性与趋势分解、平稳性检测、ARIMA/SARIMA 模型构建、预测误差评估,以及基于实际业务场景的时间序列项目实操,帮助学习者掌握从数据预处理到模型预测的完整时序分析能力。

51

2025.12.04

js 字符串转数组
js 字符串转数组

js字符串转数组的方法:1、使用“split()”方法;2、使用“Array.from()”方法;3、使用for循环遍历;4、使用“Array.split()”方法。本专题为大家提供js字符串转数组的相关的文章、下载、课程内容,供大家免费下载体验。

256

2023.08.03

js截取字符串的方法
js截取字符串的方法

js截取字符串的方法有substring()方法、substr()方法、slice()方法、split()方法和slice()方法。本专题为大家提供字符串相关的文章、下载、课程内容,供大家免费下载体验。

208

2023.09.04

java基础知识汇总
java基础知识汇总

java基础知识有Java的历史和特点、Java的开发环境、Java的基本数据类型、变量和常量、运算符和表达式、控制语句、数组和字符串等等知识点。想要知道更多关于java基础知识的朋友,请阅读本专题下面的的有关文章,欢迎大家来php中文网学习。

1465

2023.10.24

字符串介绍
字符串介绍

字符串是一种数据类型,它可以是任何文本,包括字母、数字、符号等。字符串可以由不同的字符组成,例如空格、标点符号、数字等。在编程中,字符串通常用引号括起来,如单引号、双引号或反引号。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

619

2023.11.24

java读取文件转成字符串的方法
java读取文件转成字符串的方法

Java8引入了新的文件I/O API,使用java.nio.file.Files类读取文件内容更加方便。对于较旧版本的Java,可以使用java.io.FileReader和java.io.BufferedReader来读取文件。在这些方法中,你需要将文件路径替换为你的实际文件路径,并且可能需要处理可能的IOException异常。想了解更多java的相关内容,可以阅读本专题下面的文章。

550

2024.03.22

php中定义字符串的方式
php中定义字符串的方式

php中定义字符串的方式:单引号;双引号;heredoc语法等等。想了解更多字符串的相关内容,可以阅读本专题下面的文章。

545

2024.04.29

go语言字符串相关教程
go语言字符串相关教程

本专题整合了go语言字符串相关教程,阅读专题下面的文章了解更多详细内容。

161

2025.07.29

高德地图升级方法汇总
高德地图升级方法汇总

本专题整合了高德地图升级相关教程,阅读专题下面的文章了解更多详细内容。

2

2026.01.16

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

Sass 教程
Sass 教程

共14课时 | 0.8万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号