多项式回归是通过引入特征高次项拟合非线性趋势的线性模型,关键在于合理选择次数以匹配数据节奏、避免过拟合与外推风险,并需标准化、交叉验证和残差诊断。

多项式回归是处理非线性趋势最直接、可解释性较强的方法之一。它本质仍是线性回归,但通过引入特征的高次项(如 x²、x³)让模型拟合曲线关系。关键不在于“多高次”,而在于是否匹配数据的真实变化节奏——过低欠拟合,过高易过拟合且泛化差。
先确认目标变量 y 是否随某个特征 x 呈现明显弯曲趋势(如先升后降、加速增长等)。可用散点图快速判断:
plt.scatter(x, y); plt.show()
若趋势近似抛物线或S形局部,多项式回归就值得尝试。
注意:x 通常需中心化或标准化(尤其高阶时),避免 xⁿ 数值爆炸导致数值不稳定。scikit-learn 的 PolynomialFeatures 默认不缩放,建议配合 StandardScaler 使用。
用 PolynomialFeatures 自动生成幂次组合(如 degree=2 时生成 [1, x, x²]),再传给 LinearRegression 拟合:
不能只看 R²:高次多项式常在训练集上 R² 接近 1,但测试集大幅下降。重点检查:
多项式回归不是万能解。遇到以下情况,换方法更稳妥:
立即学习“Python免费学习笔记(深入)”;
基本上就这些。多项式回归门槛低、上手快,但成败在于 degree 判断和边界意识——拟合得再漂亮,外推错一步,结果就不可信。
以上就是Python使用多项式回归解决非线性趋势预测的建模流程解析【教程】的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号