0

0

视觉词袋用于对象识别

王林

王林

发布时间:2024-01-22 13:48:20

|

1055人浏览过

|

来源于网易伏羲

转载

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

用于对象识别的视觉词袋

随着计算机视觉领域的不断发展,人们对于对象识别的研究也越来越深入。其中,视觉词袋(BoW)是常用的对象识别方法。本文将介绍视觉词袋方法的原理、优缺点,并举例说明。 视觉词袋方法是一种基于图像局部特征的对象识别方法。它将图像分割为多个小区域,并提取每个区域的特征描述子。然后,通过聚类算法将这些特征描述子分组成一个视觉词袋,其中每个词袋表示一种特定的局部特征。在对象识别阶段,将输入图像的特征描述子与视觉词

android中音频视频开发教程 中文WORD版
android中音频视频开发教程 中文WORD版

媒体包提供了可管理各种媒体类型的类。这些类可提供用于执行音频和视频操作。除了基本操作之外,还可提供铃声管理、脸部识别以及音频路由控制。本文说明了音频和视频操作。 本文旨在针对希望简单了解Android编程的初学者而设计。本文将指导你逐步开发使用媒体(音频和视频)的应用程序。本文假定你已安装了可开发应用程序的Android和必要的工具,同时还假定你已熟悉Java或掌握面向对象的编程概念。感兴趣的朋友可以过来看看

下载

一、原理

视觉词袋是一种经典的图像分类方法。它通过提取图像中的局部特征,并使用聚类算法将这些特征聚类为一组视觉词。然后,通过统计每个视觉词在图像中出现的频率,将图像表示为一个固定长度的向量,即视觉词袋表示。最后,将视觉词袋输入分类器中进行分类。这种方法在图像识别任务中广泛应用,因为它能够捕捉到图像中的重要特征,并将其表示为可供分类器使用的向量形式。

二、优缺点

优点:

(1)视觉词袋方法简单,易于实现;

(2)能够提取出图像的局部特征,对于物体的旋转、缩放等变换具有一定的鲁棒性;

(3)对于较小的数据集,具有较好的分类效果。

缺点:

(1)视觉词袋方法没有考虑到特征之间的空间关系,对于物体的姿态变化、部分遮挡等情况,分类效果较差;

(2)需要手动设置聚类的数目,对于不同的数据集,需要重新设置聚类数目,导致通用性较差;

(3)不能利用深度学习中的优秀特征表示,因此分类效果有限。

三、举例说明

下面以MNIST数据集为例,说明视觉词袋的应用。

MNIST数据集是一个手写数字分类的数据集,包含60000个训练集样本和10000个测试集样本。每个样本是一个28x28的灰度图像,表示一个手写数字。代码实现如下:

import numpy as np
import cv2
from sklearn.cluster import KMeans
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

# 读取MNIST数据集
train_images = np.load('mnist_train_images.npy')
train_labels = np.load('mnist_train_labels.npy')
test_images = np.load('mnist_test_images.npy')
test_labels = np.load('mnist_test_labels.npy')

# 特征提取
features = []
sift = cv2.xfeatures2d.SIFT_create()
for image in train_images:
    keypoints, descriptors = sift.detectAndCompute(image, None)
    features.append(descriptors)
features = np.concatenate(features, axis=0)

# 聚类
n_clusters = 100
kmeans = KMeans(n_clusters=n_clusters)
kmeans.fit(features)

# 计算视觉词袋
train_bow = []
for image in train_images:
    keypoints, descriptors = sift.detectAndCompute(image, None)
    hist = np.zeros(n_clusters)
    labels = kmeans.predict(descriptors)
    for label in labels:
        hist[label] += 1
    train_bow.append(hist)
train_bow = np.array(train_bow)

test_bow = []
for image in test_images:
    keypoints, descriptors = sift.detectAndCompute(image, None)
    hist = np.zeros(n_clusters)
    labels = kmeans.predict(descriptors)
    for label in labels:
        hist[label] += 1
    test_bow.append(hist)
test_bow = np.array(test_bow)

# 分类
knn = KNeighborsClassifier()
knn.fit(train_bow, train_labels)
pred_labels = knn.predict(test_bow)

# 计算准确率
acc = accuracy_score(test_labels, pred_labels)
print('Accuracy:', acc)

相关专题

更多
页面置换算法
页面置换算法

页面置换算法是操作系统中用来决定在内存中哪些页面应该被换出以便为新的页面提供空间的算法。本专题为大家提供页面置换算法的相关文章,大家可以免费体验。

396

2023.08.14

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

26

2026.01.09

c++框架学习教程汇总
c++框架学习教程汇总

本专题整合了c++框架学习教程汇总,阅读专题下面的文章了解更多详细内容。

24

2026.01.09

学python好用的网站推荐
学python好用的网站推荐

本专题整合了python学习教程汇总,阅读专题下面的文章了解更多详细内容。

72

2026.01.09

学python网站汇总
学python网站汇总

本专题整合了学python网站汇总,阅读专题下面的文章了解更多详细内容。

9

2026.01.09

python学习网站
python学习网站

本专题整合了python学习相关推荐汇总,阅读专题下面的文章了解更多详细内容。

10

2026.01.09

俄罗斯手机浏览器地址汇总
俄罗斯手机浏览器地址汇总

汇总俄罗斯Yandex手机浏览器官方网址入口,涵盖国际版与俄语版,适配移动端访问,一键直达搜索、地图、新闻等核心服务。

52

2026.01.09

漫蛙稳定版地址大全
漫蛙稳定版地址大全

漫蛙稳定版地址大全汇总最新可用入口,包含漫蛙manwa漫画防走失官网链接,确保用户随时畅读海量正版漫画资源,建议收藏备用,避免因域名变动无法访问。

184

2026.01.09

php学习网站大全
php学习网站大全

精选多个优质PHP入门学习网站,涵盖教程、实战与文档,适合零基础到进阶开发者,助你高效掌握PHP编程。

15

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
Node.js 教程
Node.js 教程

共57课时 | 8.3万人学习

CSS3 教程
CSS3 教程

共18课时 | 4.4万人学习

Rust 教程
Rust 教程

共28课时 | 4.3万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号