
本教程演示如何利用检索增强生成 (RAG) 技术构建一个具备上下文感知能力的待办事项列表应用。我们将结合Google Gemini API进行文本嵌入,借助pgvector高效管理向量数据,并使用Prisma和NestJS框架操作PostgreSQL数据库。此方案将实现诸如去重任务和基于上下文检索相似任务等高级功能。
<code class="bash">nest new todo-app cd todo-app</code>
<code class="bash">rm src/app.controller.* src/app.service.* src/app.module.ts</code>
安装所需依赖包:
<code class="bash">npm install prisma @prisma/client @google/generative-ai dotenv pg</code>
<code class="bash">npx prisma init</code>
.env文件:<code>DATABASE_URL="postgresql://<用户名>:<密码>@localhost:5432/<数据库名>?schema=public" GEMINI_API_KEY="<你的Gemini API密钥>"</code>
schema.prisma文件中启用pgvector:<code class="prisma">generator client {
provider = "prisma-client-js"
previewFeatures = ["postgresqlextensions"]
}
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
extensions = ["pgvector"]
}
model Task {
id Int @id @default(autoincrement())
title String
content String
embedding Unsupported("vector(1536)")
}</code><code class="bash">npx prisma migrate dev --name init</code>
创建Prisma模块用于数据库访问:
<code class="typescript">// src/prisma/prisma.module.ts
import { Module } from '@nestjs/common';
import { PrismaService } from './prisma.service';
@Module({
providers: [PrismaService],
exports: [PrismaService],
})
export class PrismaModule {}
// src/prisma/prisma.service.ts
import { Injectable, OnModuleInit, OnModuleDestroy } from '@nestjs/common';
import { PrismaClient } from '@prisma/client';
@Injectable()
export class PrismaService extends PrismaClient implements OnModuleInit, OnModuleDestroy {
async onModuleInit() {
await this.$connect();
}
async onModuleDestroy() {
await this.$disconnect();
}
}</code>在主模块中导入Prisma模块:
<code class="typescript">// src/app.module.ts
import { Module } from '@nestjs/common';
import { PrismaModule } from './prisma/prisma.module';
import { TasksModule } from './tasks/tasks.module';
@Module({
imports: [PrismaModule, TasksModule],
})
export class AppModule {}</code><code class="bash">nest generate module tasks nest generate service tasks nest generate controller tasks</code>
TasksService:<code class="typescript">// src/tasks/tasks.service.ts
import { Injectable } from '@nestjs/common';
import { PrismaService } from '../prisma/prisma.service';
import { Task } from '@prisma/client';
import { GeminiService } from '../gemini/gemini.service';
@Injectable()
export class TasksService {
constructor(private prisma: PrismaService, private geminiService: GeminiService) {}
async createTask(title: string, content: string): Promise<Task> {
const embedding = await this.geminiService.getEmbedding(`${title} ${content}`);
return this.prisma.task.create({
data: { title, content, embedding },
});
}
async getTasks(): Promise<Task[]> {
return this.prisma.task.findMany();
}
async findSimilarTasks(embedding: number[], limit = 5): Promise<any[]> {
const embeddingStr = `[${embedding.join(',')}]`;
return this.prisma.$queryRaw`
SELECT *, embedding <-> ${embeddingStr}::vector AS distance
FROM "Task"
ORDER BY distance
LIMIT ${limit};
`;
}
}</code>TasksController:<code class="typescript">// src/tasks/tasks.controller.ts
import { Controller, Post, Get, Body } from '@nestjs/common';
import { TasksService } from './tasks.service';
@Controller('tasks')
export class TasksController {
constructor(private tasksService: TasksService) {}
@Post()
async createTask(@Body('title') title: string, @Body('content') content: string) {
return this.tasksService.createTask(title, content);
}
@Get()
async getTasks() {
return this.tasksService.getTasks();
}
}</code>GeminiService:<code class="typescript">// src/gemini/gemini.service.ts
import { Injectable } from '@nestjs/common';
import { GenerativeLanguageServiceClient } from '@google/generative-ai';
@Injectable()
export class GeminiService {
private client: GenerativeLanguageServiceClient;
constructor() {
this.client = new GenerativeLanguageServiceClient({
apiKey: process.env.GEMINI_API_KEY,
});
}
async getEmbedding(text: string): Promise<number[]> {
const result = await this.client.embedText({
model: 'models/text-embedding-001',
content: text,
});
return result.embedding;
}
}</code>通过以上步骤,你将拥有一个功能完善的待办事项列表应用,具备以下能力:
此架构支持语义搜索和上下文数据清理等高级功能,可进一步扩展以构建更智能的任务管理系统。
以上就是使用 Nestjs、RAG、Prisma 和 Gemini API 构建上下文感知的待办事项列表的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号