Pandas DataFrame宽表重塑:按固定列数分组并堆叠为长表

聖光之護
发布: 2025-10-25 10:09:12
原创
655人浏览过

Pandas DataFrame宽表重塑:按固定列数分组并堆叠为长表

本文详细介绍了如何将宽格式的pandas dataframe重塑为更易读的垂直长表,特别是当需要每n列作为一个逻辑组进行处理时。文章提供了两种核心方法:当总列数是n的倍数时,可高效利用`numpy.reshape`进行批量转换;而对于总列数不是n的倍数的情况,则通过pandas的`multiindex`和`stack`功能实现灵活重塑,并处理可能出现的缺失值。

在数据分析和处理中,我们经常会遇到宽格式的数据集,其中包含大量水平排列的列。为了便于分析或满足特定需求(例如,将每N列视为一个逻辑单元并将其堆叠成新的行),我们需要将这种宽表结构重塑为更垂直、更规范的长表。本文将详细介绍两种在Pandas中实现这一目标的方法。

场景描述

假设我们有一个非常宽的CSV文件,例如包含606列,我们已将其导入到Pandas DataFrame中。我们的目标是将原始DataFrame中每6列提取出来,作为一个新的逻辑组,并将其堆叠到目标DataFrame的行中。目标DataFrame应具有预定义的列名,例如['GroupA', 'GroupB', 'GroupC', 'GroupD', 'GroupE', 'GroupF']。

方法一:使用 numpy.reshape(适用于总列数是N的倍数)

当原始DataFrame的总列数是目标组列数(N)的整数倍时,numpy.reshape提供了一种非常高效且简洁的解决方案。这种方法将整个DataFrame的数据扁平化为一个一维数组,然后按照新的行数和列数进行重塑。

核心原理

  1. 将Pandas DataFrame转换为NumPy数组:df.to_numpy()。
  2. 使用reshape(-1, N)进行重塑:
    • -1 表示NumPy会自动计算新的行数。
    • N (例如,6) 表示新的DataFrame将有N列。
    • 这个操作实际上是将原始DataFrame的所有数据(所有行和所有列)按行优先的顺序展平,然后重新排列成N列的新结构。
  3. 将重塑后的NumPy数组转换回Pandas DataFrame,并指定新的列名。

示例代码

假设我们有一个3行12列的DataFrame,需要将其重塑为每6列一组。

import pandas as pd
import numpy as np

# 模拟一个宽格式的DataFrame
np.random.seed(123)
df_wide = pd.DataFrame(np.random.randint(10, size=(3, 12)))
print("原始宽格式DataFrame:")
print(df_wide)
# 输出:
#    0  1  2  3  4  5  6  7  8  9  10  11
# 0  2  2  6  1  3  9  6  1  0  1   9   0
# 1  0  9  3  4  0  0  4  1  7  3   2   4
# 2  7  2  4  8  0  7  9  3  4  6   1   5

# 检查列数是否是目标列数N的倍数
N = 6
if len(df_wide.columns) % N != 0:
    print(f"警告:原始列数 {len(df_wide.columns)} 不是 {N} 的整数倍,此方法可能不适用或需调整。")
else:
    print(f"\n原始DataFrame列数: {len(df_wide.columns)}")
    print(f"列数 {len(df_wide.columns)} 是 {N} 的整数倍: {len(df_wide.columns) % N == 0}")

    # 定义目标DataFrame的列名
    target_columns = ['GroupA', 'GroupB', 'GroupC', 'GroupD', 'GroupE', 'GroupF']

    # 使用numpy.reshape进行重塑
    df_target = pd.DataFrame(df_wide.to_numpy().reshape(-1, N),
                             columns=target_columns)

    print("\n重塑后的目标DataFrame:")
    print(df_target)
    # 输出:
    #    GroupA  GroupB  GroupC  GroupD  GroupE  GroupF
    # 0       2       2       6       1       3       9
    # 1       6       1       0       1       9       0
    # 2       0       9       3       4       0       0
    # 3       4       1       7       3       2       4
    # 4       7       2       4       8       0       7
    # 5       9       3       4       6       1       5
登录后复制

注意事项

  • 列数匹配: 此方法要求原始DataFrame的总列数必须是目标组列数N的整数倍。如果不是,reshape操作会失败或产生意想不到的结果。
  • 数据类型: to_numpy()会尝试统一所有列的数据类型。如果原始DataFrame中存在混合数据类型,可能会导致数据类型转换(例如,全部转换为object或float)。
  • 性能: 对于大型DataFrame,numpy.reshape通常非常高效。

方法二:使用 Pandas MultiIndex 和 stack(适用于任意列数)

当原始DataFrame的列数不是目标组列数N的整数倍时,或者当我们需要更灵活地处理列名和分组逻辑时,Pandas的MultiIndex结合stack方法提供了更通用的解决方案。这种方法通过创建多级列索引来标记每个列所属的组和其在组内的位置,然后利用stack将这些组堆叠起来。

爱图表
爱图表

AI驱动的智能化图表创作平台

爱图表 99
查看详情 爱图表

核心原理

  1. 创建列索引数组: 生成一个与原始DataFrame列数相同的序列,例如[0, 1, ..., total_columns - 1]。
  2. 构建多级列索引:
    • 第一级索引 (a % N):表示当前列在每个N列组中的位置(0到N-1)。
    • 第二级索引 (a // N):表示当前列所属的组编号。
    • 通过df.set_axis([a % N, a // N], axis=1)将这两级索引应用于DataFrame的列。
  3. 堆叠数据: 使用df.stack()默认会堆叠最内层(即第二级)的列索引,将其转换为行索引的一部分。这会将每个组的数据垂直堆叠起来。
  4. 重命名列: 堆叠后,原始的第一级索引(a % N)会成为新的列名(0到N-1)。通过set_axis(target_columns, axis=1)将其重命名为目标列名。
  5. 清理索引: reset_index(drop=True)用于清除新生成的行索引,使其变为默认的整数索引。

示例代码

假设我们有一个3行10列的DataFrame,需要将其重塑为每6列一组。由于10不是6的倍数,部分行将包含NaN。

import pandas as pd
import numpy as np

# 模拟一个宽格式的DataFrame,列数不是6的倍数
np.random.seed(123)
df_wide_uneven = pd.DataFrame(np.random.randint(10, size=(3, 10)))
print("原始宽格式DataFrame (列数非倍数):")
print(df_wide_uneven)
# 输出:
#    0  1  2  3  4  5  6  7  8  9
# 0  2  2  6  1  3  9  6  1  0  1
# 1  9  0  0  9  3  4  0  0  4  1
# 2  7  3  2  4  7  2  4  8  0  7

N = 6
print(f"\n原始DataFrame列数: {len(df_wide_uneven.columns)}")
print(f"列数 {len(df_wide_uneven.columns)} 是 {N} 的整数倍: {len(df_wide_uneven.columns) % N == 0}")

# 定义目标DataFrame的列名
target_columns = ['GroupA', 'GroupB', 'GroupC', 'GroupD', 'GroupE', 'GroupF']

# 创建列索引数组
a = np.arange(len(df_wide_uneven.columns))

# 构建MultiIndex并堆叠
df_target_uneven = (df_wide_uneven.set_axis([a % N, a // N], axis=1) # 创建MultiIndex: (列内序号, 组号)
                                  .stack()                             # 堆叠最内层索引 (组号)
                                  .set_axis(target_columns, axis=1)  # 重命名列
                                  .reset_index(drop=True))           # 重置索引

print("\n重塑后的目标DataFrame (处理非倍数列数):")
print(df_target_uneven)
# 输出:
#    GroupA  GroupB  GroupC  GroupD  GroupE  GroupF
# 0       2       2       6       1     3.0     9.0
# 1       6       1       0       1     NaN     NaN
# 2       9       0       0       9     3.0     4.0
# 3       0       0       4       1     NaN     NaN
# 4       7       3       2       4     7.0     2.0
# 5       4       8       0       7     NaN     NaN
登录后复制

注意事项

  • 缺失值处理: 当原始列数不是N的倍数时,最后一组(或多组)可能不完整。stack操作会自动用NaN填充缺失的单元格,以确保每行都有N列。因此,结果DataFrame的数据类型可能会变为浮点型(如果原始数据是整数)。
  • 索引清理: reset_index(drop=True)是必要的,因为它会移除stack操作生成的额外索引层,使DataFrame的索引干净。
  • 灵活性: 这种方法在处理复杂分组逻辑或需要保留更多原始列信息时更具优势。

总结

将宽格式的Pandas DataFrame重塑为按固定列数分组的长表是数据清洗和预处理的常见任务。

  • 对于列数是目标组列数N的整数倍的情况,推荐使用df.to_numpy().reshape(-1, N),它简洁高效。
  • 对于列数不是N的整数倍的情况,或者需要更灵活地处理列名和缺失值时,应采用Pandas MultiIndex结合stack的方法。

选择哪种方法取决于你的具体数据结构和对效率、灵活性以及缺失值处理的需求。理解这两种方法的原理和适用场景,能够帮助你更有效地处理各种数据重塑任务。

以上就是Pandas DataFrame宽表重塑:按固定列数分组并堆叠为长表的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号