0

0

python实现信息熵的计算代码

舞夢輝影

舞夢輝影

发布时间:2025-11-21 23:25:02

|

260人浏览过

|

来源于php中文网

原创

信息熵是衡量数据不确定性的指标,计算公式为H(X) = -Σ p(x) * log₂(p(x)),可通过Python实现。使用NumPy统计类别频次并计算概率,再求和得到熵值;需处理p=0时的边界情况,避免log(0)错误。代码适用于二分类、多分类及文本标签,如['猫', '狗', '鸟']等离散数据,传入标签列表即可快速计算信息熵。

python实现信息熵的计算代码

信息熵是衡量数据不确定性的指标,常用于决策树、机器学习等领域。在Python中,可以通过NumPy或数学公式直接实现信息熵的计算。

什么是信息熵

信息熵(Shannon Entropy)的公式为:

H(X) = -Σ p(x) * log₂(p(x))

其中 p(x) 是某个类别出现的概率。

立即学习Python免费学习笔记(深入)”;

ASP.NET 4.0电子商城
ASP.NET 4.0电子商城

在现实生活中的购物过程,购物者需要先到商场,找到指定的产品柜台下,查看产品实体以及标价信息,如果产品合适,就将该产品放到购物车中,到收款处付款结算。电子商务网站通过虚拟网页的形式在计算机上摸拟了整个过程,首先电子商务设计人员将产品信息分类显示在网页上,用户查看网页上的产品信息,当用户看到了中意的产品后,可以将该产品添加到购物车,最后使用网上支付工具进行结算,而货物将由公司通过快递等方式发送给购物者

下载

使用Python计算信息熵

以下是基于列表或数组计算信息熵的完整代码示例:
import numpy as np

def calculate_entropy(labels):
    # 统计每个类别的频次
    _, counts = np.unique(labels, return_counts=True)

    # 计算概率
    probabilities = counts / len(labels)

    # 计算信息熵
    entropy = -np.sum(probabilities * np.log2(probabilities))

    return entropy

# 示例数据:分类标签
labels = [1, 1, 0, 0, 0, 1, 1, 0]

# 计算信息熵
entropy = calculate_entropy(labels)
print(f"信息熵: {entropy:.4f}")

处理边界情况

当某个类别概率为0时,0*log(0) 在数学上是0,但计算机可能报错。虽然 np.log2 遇到0会返回-inf,乘以0后为nan,因此可以加一点小技巧避免问题:

def calculate_entropy_safe(labels):
    _, counts = np.unique(labels, return_counts=True)
    probabilities = counts / len(labels)

    # 忽略概率为0的情况
    entropy = -np.sum([p * np.log2(p) for p in probabilities if p > 0])

    return entropy

适用于文本或离散数据

该方法不仅适用于二分类,也适用于多分类或文本标签:

```python # 多分类示例 labels_str = ['猫', '狗', '狗', '鸟', '猫', '鸟', '鸟'] entropy_str = calculate_entropy_safe(labels_str) print(f"文本标签的信息熵: {entropy_str:.4f}") ```

基本上就这些。只要传入一组离散标签,就能快速算出信息熵。

相关文章

python速学教程(入门到精通)
python速学教程(入门到精通)

python怎么学习?python怎么入门?python在哪学?python怎么学才快?不用担心,这里为大家提供了python速学教程(入门到精通),有需要的小伙伴保存下载就能学习啦!

下载

本站声明:本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

746

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1260

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

97

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 3万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号