0

0

DeepSeek如何微调私有模型_准备训练数据并参考官方微调指南

P粉602998670

P粉602998670

发布时间:2026-01-08 21:23:02

|

227人浏览过

|

来源于php中文网

原创

DeepSeek私有化微调需严格遵循五步流程:一、用JSONL格式规范instruction/input/output字段;二、清洗HTML/乱码并去重;三、注入domain字段与领域标注;四、用原生分词器对齐长度;五、按7:2:1划分并校验分布一致性。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

deepseek如何微调私有模型_准备训练数据并参考官方微调指南

如果您计划对DeepSeek模型进行私有化微调,但尚未构建适配的训练数据集或未对照官方流程执行,则可能因数据格式错误、领域覆盖不足或预处理缺失导致训练失败或效果偏差。以下是完成训练数据准备并严格遵循官方微调指南的操作步骤:

一、明确数据格式规范与字段结构

DeepSeek官方推荐使用JSONL格式作为训练数据输入,每行一个JSON对象,必须包含instruction、input、output三个核心字段,确保模型能准确理解任务意图、上下文与期望输出。该结构直接对应DeepSeek-R1微调器(如Trainer)的默认数据解析逻辑。

1、新建纯文本文件,命名为train_data.jsonl

2、逐行写入符合以下结构的JSON对象:
{ "instruction": "生成合规金融提示语", "input": "客户申请提前还贷,需告知违约金计算方式", "output": "根据合同第5.2条,提前还款将按剩余本金的1.5%收取违约金。" }

3、确认每行仅含一个完整JSON对象,无逗号分隔、无数组包裹、无注释;

4、保存文件时编码设为UTF-8,禁用BOM头。

二、执行多阶段数据清洗与去噪

原始业务数据常含HTML标签、乱码、联系方式、重复段落等干扰项,会污染梯度更新过程。清洗目标是保留语义完整性的同时消除不可泛化噪声,符合DeepSeek官方文档中“数据质量检查要点”的强制要求。

1、使用Python加载数据集:
from datasets import load_dataset
dataset = load_dataset("json", data_files="train_data.jsonl")

2、定义清洗函数,移除HTML标签与非常用控制字符:
import re
def clean_text(text): return re.sub(r"]+>|[\x00-\x08\x0b\x0c\x0e-\x1f\x7f]", "", text)

3、对instruction、input、output三字段批量应用清洗:
dataset = dataset.map(lambda x: {k: clean_text(v) for k, v in x.items()})

4、调用simhash算法检测并剔除相似度高于0.95的重复样本。

三、注入领域知识并做标注增强

通用语料无法支撑专业场景输出稳定性,必须通过显式标注与结构化增强使模型感知领域约束。DeepSeek官方指南在“数据工程”章节强调:领域数据占比应不低于总数据的70%,且需标注关键元信息以激活条件生成能力。

1、为每条样本添加domain字段,值为"finance""medical""legal"之一;

2、对output字段中涉及数值/日期/条款编号的内容,用特殊标记包裹:
例如将“第5.2条”改为“第5.2条”,便于后续loss加权;

绘蛙AI视频
绘蛙AI视频

绘蛙推出的AI模特视频生成工具

下载

3、针对分类类子任务,在instruction中嵌入标签体系说明:
"请判断以下客服对话情绪类别(可选:urgent, frustrated, satisfied, neutral)";

4、对input字段执行同义词替换增强(使用jieba+同义词词林),单样本生成至多2条变体。

四、完成Tokenization与长度对齐

DeepSeek模型依赖其原生分词器(DeepSeekTokenizer)进行子词切分,若使用第三方分词器或跳过截断/填充,会导致ID序列越界或attention mask异常,训练过程中将触发IndexError: index out of range。此步骤必须调用transformers库内置方法。

1、加载与基础模型完全匹配的分词器:
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-r1-7b")

2、定义预处理函数,统一max_length=2048:
def tokenize_function(examples):
  inputs = [f"{inst}\n{inp}" for inst, inp in zip(examples["instruction"], examples["input"])]
  model_inputs = tokenizer(inputs, max_length=2048, truncation=True, padding="max_length")
  labels = tokenizer(examples["output"], max_length=2048, truncation=True, padding="max_length")
  model_inputs["labels"] = labels["input_ids"]
  return model_inputs

3、执行映射:
tokenized_dataset = dataset.map(tokenize_function, batched=True)

4、验证输出字段是否存在input_idsattention_masklabels,三者shape必须一致。

五、划分数据集并校验分布一致性

训练集、验证集、测试集若来自同一数据源或存在时间穿越(如用未来工单训过去模型),将导致评估指标虚高且线上效果骤降。DeepSeek官方指南明确要求“验证集和测试集须来自独立数据源”,并建议采用7:2:1比例划分。

1、调用train_test_split两次完成三级切分:
train_val = tokenized_dataset["train"].train_test_split(test_size=0.3)
val_test = train_val["test"].train_test_split(test_size=0.33)

2、分别提取train_val["train"]val_test["train"]val_test["test"]作为三组数据集;

3、统计各集合中domain字段分布,确保三者比例偏差≤5%;

4、检查output长度分布,丢弃output长度超过1500 token的样本——此类样本将被自动截断,但可能破坏答案完整性

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

738

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

634

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

755

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

617

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1259

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

705

2023.08.11

c++主流开发框架汇总
c++主流开发框架汇总

本专题整合了c++开发框架推荐,阅读专题下面的文章了解更多详细内容。

2

2026.01.09

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.6万人学习

Django 教程
Django 教程

共28课时 | 2.9万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号