0

0

比肩Transformer的Mamba在时间序列上有效吗?

WBOY

WBOY

发布时间:2024-04-02 11:31:19

|

1459人浏览过

|

来源于51CTO.COM

转载

Mamba 是最近最火的模型之一,更是被业内认为可以有取代 Transformer 的潜力。今天介绍的这篇文章,探索了 Mamba 模型在时间序列预测任务上是否有效。本文首先给大家介绍 Mamba 的基础原理,再结合这篇文章探索在时间序列预测场景下 Mamba 是否有效。 Mamba 模型是一种基于深度学习的模型,它采用了自回归架构,可以在时间序列数据中捕捉到长期依赖关系。与传统的模型相比,Mamba 模型在时间序列预测任务上表现出色。 通过实验和对比分析,本文发现 Mamba 模型在时间序列预测任务上有很好的效果。它可以准确地预测未来的时间序列值,并且在长期依赖关系的捕捉上表现更好。 总结

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

比肩transformer的mamba在时间序列上有效吗?

论文标题:Is Mamba Effective for Time Series Forecasting?

下载地址:https://www.php.cn/link/f06d497659096949ed7c01894ba38694

1、Mamba基础原理

Mamba是一种基于State Space Model的结构,但与RNN非常相似。Mamba相比Transformer,在训练阶段和inference阶段都有随序列长度线性增长的时间复杂度,运算效率取决于Transformer这种结构。

Mamba的核心可以分为以下4个部分:

State Space Model(SSM)是一种用来刻画一个状态对当前状态的影响,以及当前状态对输出的影响的数学模型。在State Space Model中,假设上一个状态和当前时刻的输入会影响下一个状态,并且当前状态对输出的影响。SSM可以表示为如下形式,矩阵A、B、C、D为超参数。 矩阵A表示上一状态对当前状态的影响; 矩阵B表示当前时刻的输入会影响下一个状态; 矩阵C表示当前状态对输出的影响; 矩阵D表示当输入对输出的直接影响。 通过观测当前输出以及当前时刻的输入,可以推断出下一个状态的值。根据当前观测结果以及当时状态的决定的。SSM可以用于动态系统建模、状态估计和控制应用等领域。

比肩Transformer的Mamba在时间序列上有效吗?图片

卷积表达:用卷积来表示SSM,实现训练阶段的并发计算,通过将SSM中的计算输出的公式按照时间展开,通过设计相应的卷积核到一定的形式,可以利用卷积来表达每个时刻的输出为前三个时刻输出的函数:

比肩Transformer的Mamba在时间序列上有效吗?图片

Hippo Matrix:对于参数A,引入Hippo Matrix实现对历史信息的衰减融合;

比肩Transformer的Mamba在时间序列上有效吗?图片

Selective模块:对于参数B和参数C个性化的矩阵实现对历史信息的个性化选择,将每个时刻的参数矩阵转换成关于输入的函数,实现每个时刻个性化的参数。

Vondy
Vondy

下一代AI应用平台,汇集了一流的工具/应用程序

下载

比肩Transformer的Mamba在时间序列上有效吗?图片

关于Mamba更详细的模型解析,以及后续的Mamba相关工作,也更新到了知识星球中,感兴趣的同学可以在星球中进一步深入学习。

2、Mamba时间序列模型

下面介绍一下这篇文章中提出的Mamba时间序列预测框架,整体基于Mamba,对时间序列数据进行适配。整体分为Embedding、S/D-Mamba layer、Norm-FFN-Norm Layer三个部分。

Embedding:类似iTransformer的处理方法,对每个变量单独进行映射,生成每个变量的embedding,再将每个变量的embedding输入到后续的Mamba中。因此本文也可以看成是对iTransformer的模型结构的一个改造,改成了Mamba结构;

S/D-Mamba layer:Embedding的输入维度为[batch_size, variable_number, dim],将其输入到Mamba中,文中探索了S和D两种Mamba层,分别表示每层用一个mamba还是两个mamba,两个mamba会将两个的输出相加得到每层的输出结果;

Norm-FFN-Norm Layer:在输出层,使用normalization层和FFN层对Mamba的输出表征进行归一化和映射,结合残差网络,提升模型收敛性和稳定性。

比肩Transformer的Mamba在时间序列上有效吗?图片

3、实验效果

下图是文中的核心实验结果,对比了Mamba和iTransformer、PatchTST等业内主流时间序列模型的效果。文中还对不同的预测窗口、泛化性等进行了实验对比。实验表明,Mamba不仅在计算资源上有优势,在模型效果上也可以比肩Transformer相关的模型,并且在长周期的建模上也很有前景。

比肩Transformer的Mamba在时间序列上有效吗?图片

相关专题

更多
http与https有哪些区别
http与https有哪些区别

http与https的区别:1、协议安全性;2、连接方式;3、证书管理;4、连接状态;5、端口号;6、资源消耗;7、兼容性。本专题为大家提供相关的文章、下载、课程内容,供大家免费下载体验。

1968

2024.08.16

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

37

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

19

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

37

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

19

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

16

2026.01.13

PHP缓存策略教程大全
PHP缓存策略教程大全

本专题整合了PHP缓存相关教程,阅读专题下面的文章了解更多详细内容。

6

2026.01.13

jQuery 正则表达式相关教程
jQuery 正则表达式相关教程

本专题整合了jQuery正则表达式相关教程大全,阅读专题下面的文章了解更多详细内容。

3

2026.01.13

交互式图表和动态图表教程汇总
交互式图表和动态图表教程汇总

本专题整合了交互式图表和动态图表的相关内容,阅读专题下面的文章了解更多详细内容。

45

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号