DS之slow motion利用PaddleGAN的DAIN模型实现视频慢动作

P粉084495128
发布: 2025-07-18 13:14:02
原创
359人浏览过
本文介绍了基于Deepshop工具箱,利用PaddleGAN的DAIN模型实现视频慢动作效果的方法。先说明DAIN模型原理,它通过估计光流和深度图生成中间帧。接着给出安装PaddleGAN、创建慢动作类的步骤,最后演示模型使用,可指定慢动作速率和处理帧范围,输出慢动作视频。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

ds之slow motion利用paddlegan的dain模型实现视频慢动作 - php中文网

先看效果 DS-slow motion

左边为原视频,右边为对第一个跃起动作进行slow motion的视频(只对视频中精彩时刻做slow motion,感觉能看出效果)

PS:视频来自B站

HTML('')

1 背景介绍

1.1 使用说明:

若只是想把视频实现慢动作slow motion效果,直接跳到“3视频慢动作” ,根据说明设置参数即可。若要了解过程,可继续阅读。

1.2 DS -- Deepshop:

1.在图像编辑中有大名鼎鼎的photoshop作为图像处理工具,那在这里我打算也弄个Deepshop作为图像处理的深度工具箱,开箱即用。

2.后续也会陆续整理其他工具,这次整理了视频慢动作工具的

3.至2021年6月,这个模型基于msgnet迁移训练,效果离以假乱真还有点距离,效果还可以继续优化,stylepro_artistic那个迁移可能效果更好,可惜暂时没找到那个可以迁移的,有时间看从头训练一个。

1.3 慢动作slow motion

1.随着手机摄像头帧率动不动就120fps,60fps,现在拍慢动作也很简单了。但若原视频只有25fps,30fps的要变成慢动作视频还是可以用DL的方法

2.就是利用ppgan(PaddleGAN中的DAIN模型,原本就是插帧的DL算法,在这里用DAIN插了帧后,保持原视频帧率不增加帧率,只增加了总帧数。相当于增加视频长度,但视频内容的真实时间长度是不变的,所以相当于实现慢动作,处理的那段视频变成慢动作了。

3.这里只是小小修改,方便进行使用而已,技术源自DAIN与PaddlePaddle

2 DAIN介绍

2.1 深度学习插帧模型

当前有不少插帧的深度学习模型,英伟达的Super slomo,上海交大的DAIN。都是为视频插帧,使视频看起来更丝滑。在这里我们把插的帧,不用来提升帧率,而是延长整个视频长度,形成慢动作slow motion效果。

DS之slow motion利用PaddleGAN的DAIN模型实现视频慢动作 - php中文网

2.2 深度感知视频帧插值 DAIN

DAIN的全称是Depth-Aware Video Frame Interpolation,2019年的CVPR.官方的github https://github.com/baowenbo/DAIN

千面视频动捕
千面视频动捕

千面视频动捕是一个AI视频动捕解决方案,专注于将视频中的人体关节二维信息转化为三维模型动作。

千面视频动捕 27
查看详情 千面视频动捕

DS之slow motion利用PaddleGAN的DAIN模型实现视频慢动作 - php中文网

—— 给定两个时刻的输入帧,先估计光流和深度图,然后使用建议的深度感知流投影层生成中间流。然后,模型基于光流和局部插值内核对输入帧、深度图和上下文特征进行扭曲,合成输出帧。这种模型紧凑、高效且完全可微分。

参考自 https://zhuanlan.zhihu.com/p/149395616

DS之slow motion利用PaddleGAN的DAIN模型实现视频慢动作 - php中文网

—— 并且,项目并没有预训练的分类网络,而是自己训练了一个内容输出网络来获取高维特征,来给视频插值。

2.3 上手插帧理

2.3.1用PaddleGAN的DAIN插帧:

直接调用封装好的类:

In [ ]
## 需要插帧的设置TruebaseUse=False## 指定要插帧的视频文件path='/home/aistudio/huaxue.mp4'#if baseUse:
    !pip install -q ppgan    import paddle    from ppgan.apps import DAINPredictor    ##需注意用静态图
    paddle.enable_static()
    dain=DAINPredictor(output='output',
                    weight_path=None,
                    time_step=0.5,
                    use_gpu=True,
                    remove_duplicates=False)
    dain.run(path)
登录后复制

2.3.2 用别的整合的DAIN 插帧

若觉得改一行代码也累,想直接用,可找已有的网页http://distinctai.net/fps ,限制就是:免费试用最大不超过10M,支持MP4、avi、rmvb等多种格式,三次免费

3 视频慢动作

3.1 安装PaddleGAN

我用最懒方法直接pip安装,有需要的也可以git后安装

In [ ]
!pip install -q ppgan
登录后复制

3.2 创建慢动作类

1.在github上追踪DAIN的代码,在 ppgan.apps下面的dain类拷贝出来,进行修改(因改动不少就没有继承DAIN了)

2.主要修改部分是frame合成视频时,及 combine_frames方法。主要改图片的名字,然后放到output/DAIN/frames-combined中

PS:ppgan这里用的是ffmpeg生成视频,指定图片文件夹所在路径来生成。这里注意图片文件名要求从000.png(0开始)一直连续顺序递增(0001.png,0002.png等)!!这里坑了不少时间

In [7]
import osimport cv2import globimport shutilimport numpy as npfrom tqdm import tqdmfrom imageio import imread, imsaveimport paddlefrom ppgan.utils.download import get_path_from_urlfrom ppgan.utils.video import video2frames, frames2videofrom ppgan.apps.base_predictor import BasePredictor
paddle.enable_static()
DAIN_WEIGHT_URL = 'https://paddlegan.bj.bcebos.com/applications/DAIN_weight.tar'class DAINSlowMotion(BasePredictor):
    def __init__(self,
                 output='output',
                 weight_path=None,
                 use_gpu=True,
                 remove_duplicates=False):
        self.output_path = os.path.join(output, 'DAIN')        if weight_path is None:
            weight_path = get_path_from_url(DAIN_WEIGHT_URL)

        self.weight_path = weight_path        #self.time_step = time_step
        self.key_frame_thread = 0
        self.remove_duplicates = remove_duplicates

        self.build_inference_model()    def run(self, video_path,slow_rate=0.5,frameIndex=[],interpolateIndex=[]):
        self.time_step=slow_rate        if len(frameIndex)!=2:
            self.frame_start=0
            self.frame_end=-1
        else:
            self.frame_start=frameIndex[0]
            self.frame_end=frameIndex[1]        if len(interpolateIndex)!=2:
            self.interpolate_start=0
            self.interpolate_end=-1
        else:
            self.interpolate_start=interpolateIndex[0]
            self.interpolate_end=interpolateIndex[1]
        frame_path_input = os.path.join(self.output_path, 'frames-input')
        frame_path_interpolated = os.path.join(self.output_path,                                               'frames-interpolated')
        frame_path_combined = os.path.join(self.output_path, 'frames-combined')
        video_path_output = os.path.join(self.output_path, 'videos-output')        if not os.path.exists(self.output_path):
            os.makedirs(self.output_path)        if not os.path.exists(frame_path_input):
            os.makedirs(frame_path_input)        if not os.path.exists(frame_path_interpolated):
            os.makedirs(frame_path_interpolated)        if not os.path.exists(frame_path_combined):
            os.makedirs(frame_path_combined)        if not os.path.exists(video_path_output):
            os.makedirs(video_path_output)

        timestep = self.time_step
        num_frames = int(1.0 / timestep) - 1

        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)        print("Old fps (frame rate): ", fps)

        times_interp = int(1.0 / timestep)
        r2 = str(int(fps) * times_interp)        print("New fps (frame rate): ", fps)

        out_path = video2frames(video_path, frame_path_input)

        vidname = os.path.basename(video_path).split('.')[0]

        frames = sorted(glob.glob(os.path.join(out_path, '*.png')))
        frames=frames[self.frame_start:self.frame_end]        #print('frames',frames)
        # if self.remove_duplicates:
        #     frames = self.remove_duplicate_frames(out_path)

        img = imread(frames[0])

        int_width = img.shape[1]
        int_height = img.shape[0]
        channel = img.shape[2]        if not channel == 3:            return

        if int_width != ((int_width >> 7) << 7):
            int_width_pad = (((int_width >> 7) + 1) << 7)  # more than necessary
            padding_left = int((int_width_pad - int_width) / 2)
            padding_right = int_width_pad - int_width - padding_left        else:
            int_width_pad = int_width
            padding_left = 32
            padding_right = 32

        if int_height != ((int_height >> 7) << 7):
            int_height_pad = (
                ((int_height >> 7) + 1) << 7)  # more than necessary
            padding_top = int((int_height_pad - int_height) / 2)
            padding_bottom = int_height_pad - int_height - padding_top        else:
            int_height_pad = int_height
            padding_top = 32
            padding_bottom = 32

        frame_num = len(frames)        if not os.path.exists(os.path.join(frame_path_interpolated, vidname)):
            os.makedirs(os.path.join(frame_path_interpolated, vidname))        if not os.path.exists(os.path.join(frame_path_combined, vidname)):
            os.makedirs(os.path.join(frame_path_combined, vidname))        for i in tqdm(range(frame_num - 1)):            if i < self.interpolate_start or (i>self.interpolate_end and self.interpolate_end>0):continue

            first = frames[i]
            second = frames[i + 1]
            first_index = int(first.split(os.sep)[-1].split('.')[-2])
            second_index = int(second.split(os.sep)[-1].split('.')[-2])

            img_first = imread(first)
            img_second = imread(second)            '''--------------Frame change test------------------------'''
            #img_first_gray = np.dot(img_first[..., :3], [0.299, 0.587, 0.114])
            #img_second_gray = np.dot(img_second[..., :3], [0.299, 0.587, 0.114])

            #img_first_gray = img_first_gray.flatten(order='C')
            #img_second_gray = img_second_gray.flatten(order='C')
            #corr = np.corrcoef(img_first_gray, img_second_gray)[0, 1]
            #key_frame = False
            #if corr < self.key_frame_thread:
            #    key_frame = True
            '''-------------------------------------------------------'''

            X0 = img_first.astype('float32').transpose((2, 0, 1)) / 255
            X1 = img_second.astype('float32').transpose((2, 0, 1)) / 255

            assert (X0.shape[1] == X1.shape[1])            assert (X0.shape[2] == X1.shape[2])

            X0 = np.pad(X0, ((0,0), (padding_top, padding_bottom), \
                (padding_left, padding_right)), mode='edge')
            X1 = np.pad(X1, ((0,0), (padding_top, padding_bottom), \
                (padding_left, padding_right)), mode='edge')

            X0 = np.expand_dims(X0, axis=0)
            X1 = np.expand_dims(X1, axis=0)

            X0 = np.expand_dims(X0, axis=0)
            X1 = np.expand_dims(X1, axis=0)

            X = np.concatenate((X0, X1), axis=0)

            o = self.base_forward(X)

            y_ = o[0]

            y_ = [
                np.transpose(                    255.0 * item.clip(                        0, 1.0)[0, :, padding_top:padding_top + int_height,
                                padding_left:padding_left + int_width],
                    (1, 2, 0)) for item in y_
            ]            if self.remove_duplicates:
                num_frames = times_interp * (second_index - first_index) - 1
                time_offsets = [
                    kk * timestep for kk in range(1, 1 + num_frames, 1)
                ]
                start = times_interp * first_index + 1
                for item, time_offset in zip(y_, time_offsets):
                    out_dir = os.path.join(frame_path_interpolated, vidname,                                           "{:08d}.png".format(start))
                    imsave(out_dir, np.round(item).astype(np.uint8))
                    start = start + 1

            else:
                time_offsets = [
                    kk * timestep for kk in range(1, 1 + num_frames, 1)
                ]

                count = 1
                for item, time_offset in zip(y_, time_offsets):
                    out_dir = os.path.join(
                        frame_path_interpolated, vidname,                        "{:08d}{:01d}.png".format(self.frame_start+i, count))
                    count = count + 1
                    imsave(out_dir, np.round(item).astype(np.uint8))

        input_dir = os.path.join(frame_path_input, vidname)
        interpolated_dir = os.path.join(frame_path_interpolated, vidname)
        combined_dir = os.path.join(frame_path_combined, vidname)        ##kevin
        ##if self.remove_duplicates:
        ##    self.combine_frames_with_rm(input_dir, interpolated_dir,
        ##                                combined_dir, times_interp)

       ## else:
        num_frames = int(1.0 / timestep) - 1
        self.combine_frames(frames, interpolated_dir, combined_dir,
                            num_frames)

        frame_pattern_combined = os.path.join(frame_path_combined, vidname,                                              '%08d.png')        #frame_pattern_combined = sorted(glob.glob(os.path.join(frame_path_combined,vidname, '*.png')))
        #print('frame_pattern_combined',frame_pattern_combined)
        video_pattern_output = os.path.join(video_path_output, vidname + '.mp4')        if os.path.exists(video_pattern_output):
            os.remove(video_pattern_output)        #kevin
        frames2video(frame_pattern_combined, video_pattern_output,str(int (fps)))        #
        return frame_pattern_combined, video_pattern_output    def combine_frames(self, frames, interpolated, combined, num_frames):
        frames1 = frames
        frames2 = sorted(glob.glob(os.path.join(interpolated, '*.png')))
        num1 = len(frames1)
        num2 = len(frames2)        for i in range(num1):
            
            src = frames1[i]
            imgname = int(src.split(os.sep)[-1].split('.')[-2])            if imgname<=self.interpolate_start:
                 dst=os.path.join(combined,'{:08d}.png'.format(imgname-self.frame_start))            elif imgname<=self.interpolate_end:
                dst=os.path.join(combined,'{:08d}.png'.format((imgname-self.interpolate_start)*num_frames+imgname-self.frame_start))            else:
                dst=os.path.join(combined,'{:08d}.png'.format((self.interpolate_end-self.interpolate_start)*(num_frames+1) \
                +self.interpolate_start+(i-self.interpolate_end)-self.frame_start))            # print('i,imgname',i,imgname)
            #assert i == imgname
            #dst = os.path.join(combined,
            #                   '{:08d}.png'.format(imgname * (num_frames + 1)))
            
            shutil.copy2(src, dst)            #print('dst1',dst)
        for i in range(num2):            try:
                
                imgname = src.split(os.sep)[-1]
                src = frames2[i ]                #src2=src[-12:-4]+'_'
                dst = os.path.join(
                    combined,'{:08d}.png'.format((i+self.interpolate_start+1+i//num_frames)-self.frame_start))                #print('dst2',dst)
                shutil.copy2(src, dst)                    
                    
            except Exception as e:                print(e)    def combine_frames_with_rm(self, input, interpolated, combined,
                               times_interp):
        frames1 = sorted(glob.glob(os.path.join(input, '*.png')))
        frames2 = sorted(glob.glob(os.path.join(interpolated, '*.png')))
        num1 = len(frames1)
        num2 = len(frames2)        for i in range(num1):
            src = frames1[i]
            index = int(src.split(os.sep)[-1].split('.')[-2])
            dst = os.path.join(combined,                               '{:08d}.png'.format(times_interp * index))
            shutil.copy2(src, dst)        for i in range(num2):
            src = frames2[i]
            imgname = src.split(os.sep)[-1]
            dst = os.path.join(combined, imgname)
            shutil.copy2(src, dst)    def remove_duplicate_frames(self, paths):
        def dhash(image, hash_size=8):
            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
            resized = cv2.resize(gray, (hash_size + 1, hash_size))
            diff = resized[:, 1:] > resized[:, :-1]            return sum([2**i for (i, v) in enumerate(diff.flatten()) if v])

        hashes = {}
        max_interp = 9
        image_paths = sorted(glob.glob(os.path.join(paths, '*.png')))        for image_path in image_paths:
            image = cv2.imread(image_path)
            h = dhash(image)
            p = hashes.get(h, [])
            p.append(image_path)
            hashes[h] = p        for (h, hashed_paths) in hashes.items():            if len(hashed_paths) > 1:
                first_index = int(hashed_paths[0].split(
                    os.sep)[-1].split('.')[-2])
                last_index = int(hashed_paths[-1].split(
                    os.sep)[-1].split('.')[-2]) + 1
                gap = 2 * (last_index - first_index) - 1
                if gap > 2 * max_interp:
                    cut1 = len(hashed_paths) // 3
                    cut2 = cut1 * 2
                    for p in hashed_paths[1:cut1 - 1]:
                        os.remove(p)                    for p in hashed_paths[cut1 + 1:cut2]:
                        os.remove(p)                    for p in hashed_paths[cut2 + 1:]:
                        os.remove(p)                if gap > max_interp:
                    mid = len(hashed_paths) // 2
                    for p in hashed_paths[1:mid - 1]:
                        os.remove(p)                    for p in hashed_paths[mid + 1:]:
                        os.remove(p)                else:                    for p in hashed_paths[1:]:
                        os.remove(p)

        frames = sorted(glob.glob(os.path.join(paths, '*.png')))        return frames
登录后复制

4模型使用

In [10]
!rm -rf /home/aistudio/output/DAIN#慢动作速率,0.25相当于 新生成3帧slow_rate=0.25# 待处理视频路径path='/home/aistudio/shijinsai.mp4'## 裁切视频videoIndex=[a,b],到时候只输出视频的第a帧到第b帧,整个视频则设空数组[]videoIndex=[]## 裁切视频,先把第几帧到第几帧的视频切出来,不切取视频则设空数组[],这里还是原视频的帧数slowIndex=[120,150]
dain=DAINSlowMotion(output='output',
                 weight_path=None,
                 use_gpu=True,
                 remove_duplicates=False)##输出视频在 output/DAIN/videos-outputdain.run(path,slow_rate,videoIndex,slowIndex)
登录后复制
[07/09 16:24:17] ppgan INFO: Found /home/aistudio/.cache/ppgan/DAIN_weight.tar
[07/09 16:24:17] ppgan INFO: Decompressing /home/aistudio/.cache/ppgan/DAIN_weight.tar...
登录后复制
2021-07-09 16:24:17,776-WARNING: The old way to load inference model is deprecated. model path: /home/aistudio/.cache/ppgan/DAIN_weight/model, params path: /home/aistudio/.cache/ppgan/DAIN_weight/params
登录后复制
Old fps (frame rate):  25.0
New fps (frame rate):  25.0
登录后复制
  0%|          | 0/356 [00:00<?, ?it/s]
 34%|███▍      | 121/356 [00:08<00:16, 14.55it/s]
 34%|███▍      | 122/356 [00:16<10:19,  2.65s/it]
 35%|███▍      | 123/356 [00:25<16:37,  4.28s/it]
 35%|███▍      | 124/356 [00:32<20:33,  5.32s/it]
 35%|███▌      | 125/356 [00:40<23:05,  6.00s/it]
 35%|███▌      | 126/356 [00:48<25:03,  6.54s/it]
 36%|███▌      | 127/356 [00:55<25:32,  6.69s/it]
 36%|███▌      | 128/356 [01:05<29:03,  7.65s/it]
 36%|███▌      | 129/356 [01:10<26:28,  7.00s/it]
 37%|███▋      | 130/356 [01:17<26:01,  6.91s/it]
 37%|███▋      | 131/356 [01:24<26:06,  6.96s/it]
 37%|███▋      | 132/356 [01:32<26:45,  7.17s/it]
 37%|███▋      | 133/356 [01:40<27:55,  7.51s/it]
 38%|███▊      | 134/356 [01:49<29:11,  7.89s/it]
 38%|███▊      | 135/356 [01:57<29:48,  8.09s/it]
 38%|███▊      | 136/356 [02:06<30:23,  8.29s/it]
 38%|███▊      | 137/356 [02:15<30:41,  8.41s/it]
 39%|███▉      | 138/356 [02:23<31:03,  8.55s/it]
 39%|███▉      | 139/356 [02:32<31:01,  8.58s/it]
 39%|███▉      | 140/356 [02:41<30:58,  8.60s/it]
 40%|███▉      | 141/356 [02:49<30:52,  8.61s/it]
 40%|███▉      | 142/356 [02:58<30:17,  8.49s/it]
 40%|████      | 143/356 [03:06<29:57,  8.44s/it]
 40%|████      | 144/356 [03:14<29:34,  8.37s/it]
 41%|████      | 145/356 [03:22<29:16,  8.32s/it]
 41%|████      | 146/356 [03:30<28:32,  8.15s/it]
 41%|████▏     | 147/356 [03:38<27:50,  7.99s/it]
 42%|████▏     | 148/356 [03:45<27:06,  7.82s/it]
 42%|████▏     | 149/356 [03:52<26:17,  7.62s/it]
 42%|████▏     | 150/356 [03:59<25:40,  7.48s/it]
100%|██████████| 356/356 [04:06<00:00,  1.44it/s]
登录后复制
('output/DAIN/frames-combined/shijinsai/%08d.png',
 'output/DAIN/videos-output/shijinsai.mp4')
登录后复制
代码解释

以上就是DS之slow motion利用PaddleGAN的DAIN模型实现视频慢动作的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号