改进的注意力残差卷积网络SA-Residual-Inception-Net

P粉084495128
发布: 2025-07-18 13:48:55
原创
601人浏览过
本项目在计算机视觉领域,针对空间和通道注意力机制,改进模型识别能力。通过解压数据集并划分训练集与验证集,定义数据集并展示。选取经典卷积神经网络对比,同时构建含SA模块的注意力残差卷积网络,经训练优化,改进模型性能较经典网络有大幅提升。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

改进的注意力残差卷积网络sa-residual-inception-net - php中文网

① 项目背景

计算机视觉领域的注意力机制主要涵盖空间注意力和通道注意力两个方面。其中空间注意力用来捕获像素间的关系,而通道注意力用来捕获通道间的关系。

在网络结构方面,含有注意力机制的卷积网络主要有两种体现形式,一种是完整的将注意力和卷积相结合的网络结构,在本项目中的SA是一种可以在已有卷积网络中即插即用的网络模块,通过对模型增加SA注意力模块以及残差模块改进模型的识别能力。

② 数据准备

2.1 解压缩数据集

我们将网上获取的数据集以压缩包的方式上传到aistudio数据集中,并加载到我们的项目内。

在使用之前我们进行数据集压缩包的一个解压。

In [ ]
# !unzip -oq /home/aistudio/data/data69664/Images.zip -d work/dataset
登录后复制
In [ ]
import paddleimport numpy as npfrom typing import Callable#参数配置config_parameters = {    "class_dim": 16,  #分类数
    "target_path":"/home/aistudio/work/",                     
    'train_image_dir': '/home/aistudio/work/trainImages',    'eval_image_dir': '/home/aistudio/work/evalImages',    'epochs':100,    'batch_size': 32,    'lr': 0.01}
登录后复制

2.2 划分数据集与数据集的定义

接下来我们使用标注好的文件进行数据集类的定义,方便后续模型训练使用。

2.2.1 划分数据集

In [ ]
import osimport shutil

train_dir = config_parameters['train_image_dir']
eval_dir = config_parameters['eval_image_dir']
paths = os.listdir('work/dataset/Images')if not os.path.exists(train_dir):
    os.mkdir(train_dir)if not os.path.exists(eval_dir):
    os.mkdir(eval_dir)for path in paths:
    imgs_dir = os.listdir(os.path.join('work/dataset/Images', path))
    target_train_dir = os.path.join(train_dir,path)
    target_eval_dir = os.path.join(eval_dir,path)    if not os.path.exists(target_train_dir):
        os.mkdir(target_train_dir)    if not os.path.exists(target_eval_dir):
        os.mkdir(target_eval_dir)    for i in range(len(imgs_dir)):        if ' ' in imgs_dir[i]:
            new_name = imgs_dir[i].replace(' ', '_')        else:
            new_name = imgs_dir[i]
        target_train_path = os.path.join(target_train_dir, new_name)
        target_eval_path = os.path.join(target_eval_dir, new_name)     
        if i % 5 == 0:
            shutil.copyfile(os.path.join(os.path.join('work/dataset/Images', path), imgs_dir[i]), target_eval_path)        else:
            shutil.copyfile(os.path.join(os.path.join('work/dataset/Images', path), imgs_dir[i]), target_train_path)print('finished train val split!')
登录后复制
finished train val split!
登录后复制

2.3 数据集定义与数据集展示

2.3.1 数据集展示

我们先看一下解压缩后的数据集长成什么样子,对比分析经典模型在Caltech101抽取16类mini版数据集上的效果

In [ ]
import osimport randomfrom matplotlib import pyplot as pltfrom PIL import Image

imgs = []
paths = os.listdir('work/dataset/Images')for path in paths:   
    img_path = os.path.join('work/dataset/Images', path)    if os.path.isdir(img_path):
        img_paths = os.listdir(img_path)
        img = Image.open(os.path.join(img_path, random.choice(img_paths)))
        imgs.append((img, path))

f, ax = plt.subplots(4, 4, figsize=(12,12))for i, img in enumerate(imgs[:16]):
    ax[i//4, i%4].imshow(img[0])
    ax[i//4, i%4].axis('off')
    ax[i//4, i%4].set_title('label: %s' % img[1])
plt.show()
登录后复制
<Figure size 864x864 with 16 Axes>
登录后复制

2.3.2 导入数据集的定义实现

In [ ]
#数据集的定义class Dataset(paddle.io.Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, transforms: Callable, mode: str ='train'):
        """
        步骤二:实现构造函数,定义数据读取方式
        """
        super(Dataset, self).__init__()
        
        self.mode = mode
        self.transforms = transforms

        train_image_dir = config_parameters['train_image_dir']
        eval_image_dir = config_parameters['eval_image_dir']

        train_data_folder = paddle.vision.DatasetFolder(train_image_dir)
        eval_data_folder = paddle.vision.DatasetFolder(eval_image_dir)        
        if self.mode  == 'train':
            self.data = train_data_folder        elif self.mode  == 'eval':
            self.data = eval_data_folder    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        data = np.array(self.data[index][0]).astype('float32')

        data = self.transforms(data)

        label = np.array([self.data[index][1]]).astype('int64')        
        return data, label        
    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        return len(self.data)
登录后复制
In [ ]
from paddle.vision import transforms as T#数据增强transform_train =T.Compose([T.Resize((256,256)),                            #T.RandomVerticalFlip(10),
                            #T.RandomHorizontalFlip(10),
                            T.RandomRotation(10),
                            T.Transpose(),
                            T.Normalize(mean=[0, 0, 0],                           # 像素值归一化
                                        std =[255, 255, 255]),                    # transforms.ToTensor(), # transpose操作 + (img / 255),并且数据结构变为PaddleTensor
                            T.Normalize(mean=[0.50950350, 0.54632660, 0.57409690],# 减均值 除标准差    
                                        std= [0.26059777, 0.26041326, 0.29220656])# 计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]
                            ])
transform_eval =T.Compose([ T.Resize((256,256)),
                            T.Transpose(),
                            T.Normalize(mean=[0, 0, 0],                           # 像素值归一化
                                        std =[255, 255, 255]),                    # transforms.ToTensor(), # transpose操作 + (img / 255),并且数据结构变为PaddleTensor
                            T.Normalize(mean=[0.50950350, 0.54632660, 0.57409690],# 减均值 除标准差    
                                        std= [0.26059777, 0.26041326, 0.29220656])# 计算过程:output[channel] = (input[channel] - mean[channel]) / std[channel]
                            ])
登录后复制

2.3.3 实例化数据集类

根据所使用的数据集需求实例化数据集类,并查看总样本量。

图改改
图改改

在线修改图片文字

图改改 455
查看详情 图改改
In [ ]
train_dataset =Dataset(mode='train',transforms=transform_train)
eval_dataset  =Dataset(mode='eval', transforms=transform_eval )#数据异步加载train_loader = paddle.io.DataLoader(train_dataset, 
                                    places=paddle.CUDAPlace(0), 
                                    batch_size=32, 
                                    shuffle=True,                                    #num_workers=2,
                                    #use_shared_memory=True
                                    )
eval_loader = paddle.io.DataLoader (eval_dataset, 
                                    places=paddle.CUDAPlace(0), 
                                    batch_size=32,                                    #num_workers=2,
                                    #use_shared_memory=True
                                    )print('训练集样本量: {},验证集样本量: {}'.format(len(train_loader), len(eval_loader)))
登录后复制
训练集样本量: 45,验证集样本量: 12
登录后复制

③ 模型选择和开发

3.1 对比网络构建

本次我们选取了经典的卷积神经网络resnet50,vgg19,mobilenet_v2来进行实验比较。

In [43]
network = paddle.vision.models.vgg19(num_classes=16)#模型封装model = paddle.Model(network)#模型可视化model.summary((-1, 3,256 , 256))
登录后复制

3.2 对比网络训练

In [44]
#优化器选择class SaveBestModel(paddle.callbacks.Callback):
    def __init__(self, target=0.5, path='work/best_model', verbose=0):
        self.target = target
        self.epoch = None
        self.path = path    def on_epoch_end(self, epoch, logs=None):
        self.epoch = epoch    def on_eval_end(self, logs=None):
        if logs.get('acc') > self.target:
            self.target = logs.get('acc')
            self.model.save(self.path)            print('best acc is {} at epoch {}'.format(self.target, self.epoch))

callback_visualdl = paddle.callbacks.VisualDL(log_dir='work/vgg19')
callback_savebestmodel = SaveBestModel(target=0.5, path='work/best_model')
callbacks = [callback_visualdl, callback_savebestmodel]

base_lr = config_parameters['lr']
epochs = config_parameters['epochs']def make_optimizer(parameters=None):
    momentum = 0.9

    learning_rate= paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=base_lr, T_max=epochs, verbose=False)
    weight_decay=paddle.regularizer.L2Decay(0.0001)
    optimizer = paddle.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=momentum,
        weight_decay=weight_decay,
        parameters=parameters)    return optimizer

optimizer = make_optimizer(model.parameters())

model.prepare(optimizer,
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy())

model.fit(train_loader,
          eval_loader,
          epochs=100,
          batch_size=1,           # 是否打乱样本集     
          callbacks=callbacks, 
          verbose=1)   # 日志展示格式
登录后复制

3.3 改进的注意力残差卷积网络SA-Residual-Inception-Net

3.3.1 SA模块的介绍

SA-NET是2021年ICASSP上的一篇论文SA-Net: Shuffle Attention for Deep Convolutional Neural Networks中提出的基于注意力机制的卷积网络模型。

SA-NET网络的核心思想是提出了SA模块。该模块对分组卷积的每个组采取通道分割。对于通道注意力分支,采用全局平均池化产生通道相关的统计信息,然后使用参数来缩放和平移通道矢量并生成通道特征表达。对于空间注意力分支,采用组归一化来产生空间相关的统计信息并生成空间特征表达。将两个分支的特征合并后,使用channel shuffle操作来进行不同子特征间的通信。如图9所示。

改进的注意力残差卷积网络SA-Residual-Inception-Net - php中文网

图9 SA模块细节示意图

3.3.2 注意力残差卷积网络的搭建

In [45]
import paddle.nn as nnclass sa_layer(nn.Layer):
    """Constructs a Channel Spatial Group module.
    Args:
        k_size: Adaptive selection of kernel size
    """

    def __init__(self, channel, groups=64):
        super(sa_layer, self).__init__()
        self.groups = groups
        self.avg_pool = nn.AdaptiveAvgPool2D(1)
        self.cweight = self.create_parameter(shape=[1, channel // (2 * groups), 1, 1],default_initializer=paddle.nn.initializer.Assign(paddle.zeros([1, channel // (2 * groups), 1, 1])))#paddle.nn.initializer.Assign=初始化参数
        self.cbias = self.create_parameter(shape=[1, channel // (2 * groups), 1, 1],default_initializer=paddle.nn.initializer.Assign(paddle.ones([1, channel // (2 * groups), 1, 1])))#paddle.zeros=全为0的tensor
        self.sweight = self.create_parameter(shape=[1, channel // (2 * groups), 1, 1],default_initializer=paddle.nn.initializer.Assign(paddle.zeros([1, channel // (2 * groups), 1, 1])))
        self.sbias = self.create_parameter(shape=[1, channel // (2 * groups), 1, 1],default_initializer=paddle.nn.initializer.Assign(paddle.ones([1, channel // (2 * groups), 1, 1])))

        self.sigmoid = nn.Sigmoid()
        self.gn = nn.GroupNorm(channel // (2 * groups), channel // (2 * groups))    @staticmethod
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape

        x = paddle.reshape(x, [b, groups, -1, h, w])#  x.shape=[1,2,3,4]    -1为x全部元素相乘然后除其他元素
        x = paddle.transpose(x, [0, 2, 1, 3, 4])        # flatten
        x = paddle.reshape(x, [b, -1, h, w])        return x    def forward(self, x):
        b, c, h, w = x.shape

        x = paddle.reshape(x, [b * self.groups, -1, h, w])
        x_0, x_1 = paddle.chunk(x, 2, axis=1)        # channel attention
        xn = self.avg_pool(x_0)
        xn = self.cweight * xn + self.cbias
        xn = x_0 * self.sigmoid(xn)        # spatial attention
        xs = self.gn(x_1)
        xs = self.sweight * xs + self.sbias
        xs = x_1 * self.sigmoid(xs)        # concatenate along channel axis
        out = paddle.concat([xn, xs], axis=1)
        out = paddle.reshape(out, [b, -1, h, w])

        out = self.channel_shuffle(out, 2)        return out
登录后复制
In [ ]
import paddle.nn.functional as F# 构建模型(Inception层)class Inception(paddle.nn.Layer):
    def __init__(self, in_channels, c1, c2, c3, c4):
        super(Inception, self).__init__()        # 路线1,卷积核1x1
        self.route1x1_1 = paddle.nn.Conv2D(in_channels, c1, kernel_size=1)        # 路线2,卷积层1x1、卷积层3x3
        self.route1x1_2 = paddle.nn.Conv2D(in_channels, c2[0], kernel_size=1)
        self.route3x3_2 = paddle.nn.Conv2D(c2[0], c2[1], kernel_size=3, padding=1)        # 路线3,卷积层1x1、卷积层5x5
        self.route1x1_3 = paddle.nn.Conv2D(in_channels, c3[0], kernel_size=1)
        self.route5x5_3 = paddle.nn.Conv2D(c3[0], c3[1], kernel_size=5, padding=2)        # 路线4,池化层3x3、卷积层1x1
        self.route3x3_4 = paddle.nn.MaxPool2D(kernel_size=3, stride=1, padding=1)
        self.route1x1_4 = paddle.nn.Conv2D(in_channels, c4, kernel_size=1)    def forward(self, x):
        route1 = F.relu(self.route1x1_1(x))
        route2 = F.relu(self.route3x3_2(F.relu(self.route1x1_2(x))))
        route3 = F.relu(self.route5x5_3(F.relu(self.route1x1_3(x))))
        route4 = F.relu(self.route1x1_4(self.route3x3_4(x)))
        out = [route1, route2, route3, route4]        return paddle.concat(out, axis=1)  # 在通道维度(axis=1)上进行连接# 构建 BasicConv2d 层def BasicConv2d(in_channels, out_channels, kernel, stride=1, padding=0):
    layer = paddle.nn.Sequential(
                paddle.nn.Conv2D(in_channels, out_channels, kernel, stride, padding), 
                paddle.nn.BatchNorm2D(out_channels, epsilon=1e-3),
                paddle.nn.ReLU())    return layerclass Residual(paddle.nn.Layer):
    def __init__(self, in_channel, out_channel, stride=1):
        super(Residual, self).__init__()
        self.conv1 = paddle.nn.Conv2D(in_channel, out_channel, kernel_size=1, stride=1)
        self.b5 = paddle.nn.Sequential(Inception(256, 64, (64, 128), (16, 32), 32))    def forward(self, x):
        y = self.b5(x)
        x = self.conv1(x)
        out = F.relu(y+x) #核心代码
        return out# 搭建网络class TowerNet(paddle.nn.Layer):
    def __init__(self, in_channel, num_classes):
        super(TowerNet, self).__init__()
        self.b1 = paddle.nn.Sequential(
                    BasicConv2d(in_channel, out_channels=64, kernel=3, stride=2, padding=1),
                    paddle.nn.MaxPool2D(2, 2))
        self.b2 = paddle.nn.Sequential(
                    BasicConv2d(64, 128, kernel=3, padding=1),
                    paddle.nn.MaxPool2D(2, 2))
        self.b3 = paddle.nn.Sequential(
                    BasicConv2d(128, 256, kernel=3, padding=1),
                    paddle.nn.MaxPool2D(2, 2),
                    sa_layer(256))
        self.b4 = paddle.nn.Sequential(
                    BasicConv2d(256, 256, kernel=3, padding=1),
                    paddle.nn.MaxPool2D(2, 2),
                    sa_layer(256))
        self.b5 = paddle.nn.Sequential(
                    Residual(256,256),
                    paddle.nn.MaxPool2D(2, 2),
                    sa_layer(256),
                    Residual(256,256),
                    paddle.nn.MaxPool2D(2, 2),
                    sa_layer(256),
                    Residual(256,256))
        self.AvgPool2D=paddle.nn.AvgPool2D(2)
        self.flatten=paddle.nn.Flatten()
        self.b6 = paddle.nn.Linear(256, num_classes)    def forward(self, x):
        x = self.b1(x)
        x = self.b2(x)
        x = self.b3(x)
        x = self.b4(x)
        x = self.b5(x)
        x = self.AvgPool2D(x)
        x = self.flatten(x)
        x = self.b6(x)        return x
登录后复制
In [ ]
model = paddle.Model(TowerNet(3, config_parameters['class_dim']))
model.summary((-1, 3, 256, 256))
登录后复制

④ 改进模型的训练和优化器的选择

In [ ]
#优化器选择class SaveBestModel(paddle.callbacks.Callback):
    def __init__(self, target=0.5, path='work/best_model1', verbose=0):
        self.target = target
        self.epoch = None
        self.path = path    def on_epoch_end(self, epoch, logs=None):
        self.epoch = epoch    def on_eval_end(self, logs=None):
        if logs.get('acc') > self.target:
            self.target = logs.get('acc')
            self.model.save(self.path)            print('best acc is {} at epoch {}'.format(self.target, self.epoch))

callback_visualdl = paddle.callbacks.VisualDL(log_dir='work/SA_Residual_Inception_Net1')
callback_savebestmodel = SaveBestModel(target=0.5, path='work/best_model1')
callbacks = [callback_visualdl, callback_savebestmodel]

base_lr = config_parameters['lr']
epochs = config_parameters['epochs']def make_optimizer(parameters=None):
    momentum = 0.9

    learning_rate= paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=base_lr, T_max=epochs, verbose=False)
    weight_decay=paddle.regularizer.L2Decay(0.0002)
    optimizer = paddle.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=momentum,
        weight_decay=weight_decay,
        parameters=parameters)    return optimizer

optimizer = make_optimizer(model.parameters())
登录后复制
In [ ]
model.prepare(optimizer,
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy())
登录后复制
In [ ]
model.fit(train_loader,
          eval_loader,
          epochs=100,
          batch_size=1,           # 是否打乱样本集     
          callbacks=callbacks, 
          verbose=1)   # 日志展示格式
登录后复制

⑤模型训练效果展示及总结

改进的注意力残差卷积网络SA-Residual-Inception-Net - php中文网

紫色曲线为本次改进模型训练曲线,在增加了SA模块的注意力机制后,性能和其他经典网络有了较大幅度的提升。

以上就是改进的注意力残差卷积网络SA-Residual-Inception-Net的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号