CondenseNet V2:深度网络的稀疏特征重新激活

P粉084495128
发布: 2025-07-18 14:16:58
原创
895人浏览过
本文介绍CondenseNet V2模型的实现,该模型基于密集连接,针对DenseNet和CondenseNet特征复用问题,引入稀疏特征重激活,对冗余特征裁剪与更新,提升复用效率。文中给出基于Paddle的代码实现,包括各组件及预设模型,并测试了模型输出,还列出不同模型在ImageNet-1k上的精度表现。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

condensenet v2:深度网络的稀疏特征重新激活 - php中文网

引入

  • 最近各种 Transformer 的视觉模型层出不穷,偶然看到一些新的 CNN 模型居然有一丝小兴奋
  • 这次就来大致实现一下 CPVR 2021 新鲜出炉的新模型 —— CondenseNet V2

相关资料

  • 论文:CondenseNet V2: Sparse Feature Reactivation for Deep Networks
  • 官方实现:jianghaojun/CondenseNetV2
  • 参考文章:CVPR2021 | 密集连接网络中的稀疏特征重激活

论文概述

  • 本文提出了一种基于密集连接的高效轻量级神经网络。
  • 针对 DenseNet 的特征复用冗余,CondenseNet 提出利用可学习分组卷积来裁剪掉冗余连接。
  • 然而,DenseNet 的和 CondenseNet 中特征一旦产生将不再发生任何更改,这就导致了部分特征的潜在价值被严重忽略。
  • 本文提出:与其直接删掉冗余,不妨给冗余特征一个“翻身”机会。
  • 因此我们提出一种可学习的稀疏特征重激活的方法,来有选择地更新冗余特征,从而增强特征的复用效率。
  • CondenseNet V2 在 CondenseNet 的基础上引入了稀疏特征重激活,对冗余特征同时进行了裁剪和更新,有效提升了密集连接网络的特征复用效率,在图像分类和检测任务上取得的出色表现。
  • 更多详情请看上面的参考文章的内容

代码实现

  • 官方实现只提供了转换后的标准分组卷积的模型参数,大致的转换流程如下图:

CondenseNet V2:深度网络的稀疏特征重新激活 - php中文网

百度虚拟主播
百度虚拟主播

百度智能云平台的一站式、灵活化的虚拟主播直播解决方案

百度虚拟主播36
查看详情 百度虚拟主播
  • 所以为了兼容这些模型参数,代码也是转换后的模型代码,适合于微调使用
  • 完整的模型训练代码之后应该会再更新的
In [1]
!pip install ppim
登录后复制
In [2]
import paddleimport paddle.nn as nnimport paddle.vision.transforms as Tfrom ppim.models.common import kaiming_normal_, zeros_, ones_class SELayer(nn.Layer):
    def __init__(self, inplanes, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2D(1)
        self.fc = nn.Sequential(
            nn.Linear(inplanes, inplanes // reduction, bias_attr=False),
            nn.ReLU(),
            nn.Linear(inplanes // reduction, inplanes, bias_attr=False),
            nn.Sigmoid()
        )    def forward(self, x):
        b, c, _, _ = x.shape
        y = self.avg_pool(x).reshape((b, c))
        y = self.fc(y).reshape((b, c, 1, 1))        return x * y.expand_as(x)class HS(nn.Layer):
    def __init__(self):
        super(HS, self).__init__()
        self.relu6 = nn.ReLU6()    def forward(self, inputs):
        return inputs * self.relu6(inputs + 3) / 6class Conv(nn.Sequential):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, groups=1, activation='ReLU', bn_momentum=0.9):
        super(Conv, self).__init__()
        self.add_sublayer('norm', nn.BatchNorm2D(
            in_channels, momentum=bn_momentum))        if activation == 'ReLU':
            self.add_sublayer('activation', nn.ReLU())        elif activation == 'HS':
            self.add_sublayer('activation', HS())        else:            raise NotImplementedError
        self.add_sublayer('conv', nn.Conv2D(in_channels, out_channels,
                                            kernel_size=kernel_size,
                                            stride=stride,
                                            padding=padding, bias_attr=False,
                                            groups=groups))def ShuffleLayer(x, groups):
    batchsize, num_channels, height, width = x.shape
    channels_per_group = num_channels // groups    # reshape
    x = x.reshape((batchsize, groups, channels_per_group, height, width))    # transpose
    x = x.transpose((0, 2, 1, 3, 4))    # reshape
    x = x.reshape((batchsize, -1, height, width))    return xdef ShuffleLayerTrans(x, groups):
    batchsize, num_channels, height, width = x.shape
    channels_per_group = num_channels // groups    # reshape
    x = x.reshape((batchsize, channels_per_group, groups, height, width))    # transpose
    x = x.transpose((0, 2, 1, 3, 4))    # reshape
    x = x.reshape((batchsize, -1, height, width))    return xclass CondenseLGC(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, groups=1, activation='ReLU'):
        super(CondenseLGC, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups
        self.norm = nn.BatchNorm2D(self.in_channels)        if activation == 'ReLU':
            self.activation = nn.ReLU()        elif activation == 'HS':
            self.activation = HS()        else:            raise NotImplementedError
        self.conv = nn.Conv2D(self.in_channels, self.out_channels,
                              kernel_size=kernel_size,
                              stride=stride,
                              padding=padding,
                              groups=self.groups,
                              bias_attr=False)
        self.register_buffer('index', paddle.zeros(
            (self.in_channels,), dtype='int64'))    def forward(self, x):
        x = paddle.index_select(x, self.index, axis=1)
        x = self.norm(x)
        x = self.activation(x)
        x = self.conv(x)
        x = ShuffleLayer(x, self.groups)        return xclass CondenseSFR(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, groups=1, activation='ReLU'):
        super(CondenseSFR, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.groups = groups
        self.norm = nn.BatchNorm2D(self.in_channels)        if activation == 'ReLU':
            self.activation = nn.ReLU()        elif activation == 'HS':
            self.activation = HS()        else:            raise NotImplementedError
        self.conv = nn.Conv2D(self.in_channels, self.out_channels,
                              kernel_size=kernel_size,
                              padding=padding,
                              groups=self.groups,
                              bias_attr=False,
                              stride=stride)
        self.register_buffer('index', paddle.zeros(
            (self.out_channels, self.out_channels)))    def forward(self, x):
        x = self.norm(x)
        x = self.activation(x)
        x = ShuffleLayerTrans(x, self.groups)
        x = self.conv(x)  # SIZE: N, C, H, W
        N, C, H, W = x.shape
        x = x.reshape((N, C, H * W))
        x = x.transpose((0, 2, 1))  # SIZE: N, HW, C
        # x SIZE: N, HW, C; self.index SIZE: C, C; OUTPUT SIZE: N, HW, C
        x = paddle.matmul(x, self.index)
        x = x.transpose((0, 2, 1))  # SIZE: N, C, HW
        x = x.reshape((N, C, H, W))  # SIZE: N, C, HW
        return xclass _SFR_DenseLayer(nn.Layer):
    def __init__(self, in_channels, growth_rate, group_1x1, group_3x3, group_trans, bottleneck, activation, use_se=False):
        super(_SFR_DenseLayer, self).__init__()
        self.group_1x1 = group_1x1
        self.group_3x3 = group_3x3
        self.group_trans = group_trans
        self.use_se = use_se        # 1x1 conv i --> b*k
        self.conv_1 = CondenseLGC(in_channels, bottleneck * growth_rate,
                                  kernel_size=1, groups=self.group_1x1,
                                  activation=activation)        # 3x3 conv b*k --> k
        self.conv_2 = Conv(bottleneck * growth_rate, growth_rate,
                           kernel_size=3, padding=1, groups=self.group_3x3,
                           activation=activation)        # 1x1 res conv k(8-16-32)--> i (k*l)
        self.sfr = CondenseSFR(growth_rate, in_channels, kernel_size=1,
                               groups=self.group_trans, activation=activation)        if self.use_se:
            self.se = SELayer(inplanes=growth_rate, reduction=1)    def forward(self, x):
        x_ = x
        x = self.conv_1(x)
        x = self.conv_2(x)        if self.use_se:
            x = self.se(x)
        sfr_feature = self.sfr(x)
        y = x_ + sfr_feature        return paddle.concat([y, x], 1)class _SFR_DenseBlock(nn.Sequential):
    def __init__(self, num_layers, in_channels, growth_rate, group_1x1,
                 group_3x3, group_trans, bottleneck, activation, use_se):
        super(_SFR_DenseBlock, self).__init__()        for i in range(num_layers):
            layer = _SFR_DenseLayer(
                in_channels + i * growth_rate, growth_rate, group_1x1, group_3x3, group_trans, bottleneck, activation, use_se)
            self.add_sublayer('denselayer_%d' % (i + 1), layer)class _Transition(nn.Layer):
    def __init__(self):
        super(_Transition, self).__init__()
        self.pool = nn.AvgPool2D(kernel_size=2, stride=2)    def forward(self, x):
        x = self.pool(x)        return xclass CondenseNetV2(nn.Layer):
    def __init__(self, stages, growth, HS_start_block, SE_start_block, fc_channel, group_1x1,
                 group_3x3, group_trans, bottleneck, last_se_reduction, class_dim=1000):
        super(CondenseNetV2, self).__init__()
        self.stages = stages
        self.growth = growth
        self.class_dim = class_dim
        self.last_se_reduction = last_se_reduction        assert len(self.stages) == len(self.growth)
        self.progress = 0.0

        self.init_stride = 2
        self.pool_size = 7

        self.features = nn.Sequential()        # Initial nChannels should be 3
        self.num_features = 2 * self.growth[0]        # Dense-block 1 (224x224)
        self.features.add_sublayer('init_conv', nn.Conv2D(3, self.num_features,
                                                          kernel_size=3,
                                                          stride=self.init_stride,
                                                          padding=1,
                                                          bias_attr=False))        for i in range(len(self.stages)):
            activation = 'HS' if i >= HS_start_block else 'ReLU'
            use_se = True if i >= SE_start_block else False
            # Dense-block i
            self.add_block(i, group_1x1, group_3x3, group_trans,
                           bottleneck, activation, use_se)

        self.fc = nn.Linear(self.num_features, fc_channel)
        self.fc_act = HS()        # Classifier layer
        if class_dim > 0:
            self.classifier = nn.Linear(fc_channel, class_dim)
        self._initialize()    def add_block(self, i, group_1x1, group_3x3, group_trans, bottleneck, activation, use_se):
        # Check if ith is the last one
        last = (i == len(self.stages) - 1)
        block = _SFR_DenseBlock(
            num_layers=self.stages[i],
            in_channels=self.num_features,
            growth_rate=self.growth[i],
            group_1x1=group_1x1,
            group_3x3=group_3x3,
            group_trans=group_trans,
            bottleneck=bottleneck,
            activation=activation,
            use_se=use_se,
        )
        self.features.add_sublayer('denseblock_%d' % (i + 1), block)
        self.num_features += self.stages[i] * self.growth[i]        if not last:
            trans = _Transition()
            self.features.add_sublayer('transition_%d' % (i + 1), trans)        else:
            self.features.add_sublayer('norm_last',
                                       nn.BatchNorm2D(self.num_features))
            self.features.add_sublayer('relu_last',
                                       nn.ReLU())
            self.features.add_sublayer('pool_last',
                                       nn.AvgPool2D(self.pool_size))            # if useSE:
            self.features.add_sublayer('se_last',
                                       SELayer(self.num_features, reduction=self.last_se_reduction))    def forward(self, x):
        features = self.features(x)
        out = features.reshape((features.shape[0], -1))
        out = self.fc(out)
        out = self.fc_act(out)        if self.class_dim > 0:
            out = self.classifier(out)        return out    def _initialize(self):
        # initialize
        for m in self.sublayers():            if isinstance(m, nn.Conv2D):
                kaiming_normal_(m.weight)            elif isinstance(m, nn.BatchNorm2D):
                ones_(m.weight)
                zeros_(m.bias)
登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  def convert_to_list(value, n, name, dtype=np.int):
登录后复制

预设模型

In [3]
def cdnv2_a(pretrained=False, **kwargs):
    model = CondenseNetV2(
        stages=[1, 1, 4, 6, 8],
        growth=[8, 8, 16, 32, 64],
        HS_start_block=2,
        SE_start_block=3,
        fc_channel=828,
        group_1x1=8,
        group_3x3=8,
        group_trans=8,
        bottleneck=4,
        last_se_reduction=16,
        **kwargs
    )    if pretrained:
        params = paddle.load('data/data80680/cdnv2_a.pdparams')
        model.set_dict(params)    return modeldef cdnv2_b(pretrained=False, **kwargs):
    model = CondenseNetV2(
        stages=[2, 4, 6, 8, 6],
        growth=[6, 12, 24, 48, 96],
        HS_start_block=2,
        SE_start_block=3,
        fc_channel=1024,
        group_1x1=6,
        group_3x3=6,
        group_trans=6,
        bottleneck=4,
        last_se_reduction=16,
        **kwargs
    )    if pretrained:
        params = paddle.load('data/data80680/cdnv2_b.pdparams')
        model.set_dict(params)    return modeldef cdnv2_c(pretrained=False, **kwargs):
    model = CondenseNetV2(
        stages=[4, 6, 8, 10, 8],
        growth=[8, 16, 32, 64, 128],
        HS_start_block=2,
        SE_start_block=3,
        fc_channel=1024,
        group_1x1=8,
        group_3x3=8,
        group_trans=8,
        bottleneck=4,
        last_se_reduction=16,
        **kwargs
    )    if pretrained:
        params = paddle.load('data/data80680/cdnv2_c.pdparams')
        model.set_dict(params)    return model
登录后复制

模型测试

In [5]
model = cdnv2_a()
out = model(paddle.randn((1, 3, 224, 224)))print(out.shape)
model.eval()
out = model(paddle.randn((1, 3, 224, 224)))print(out.shape)
登录后复制
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:648: UserWarning: When training, we now always track global mean and variance.
  "When training, we now always track global mean and variance.")
登录后复制
[1, 1000]
[1, 1000]
登录后复制

精度表现

  • 具体的模型精度表现如下(ImageNet-1k):
Model Model Name Params (M) FLOPs (G) Top-1 (%) Top-5 (%) Pretrained Model
CondenseNetV2-A cdnv2_a 2.0 0.05 64.38 85.24 Download
CondenseNetV2-B cdnv2_b 3.6 0.15 71.89 90.27 Download
CondenseNetV2-C cdnv2_c 6.1 0.31 75.87 92.64 Download

以上就是CondenseNet V2:深度网络的稀疏特征重新激活的详细内容,更多请关注php中文网其它相关文章!

相关标签:
Windows激活工具
Windows激活工具

Windows激活工具是正版认证的激活工具,永久激活,一键解决windows许可证即将过期。可激活win7系统、win8.1系统、win10系统、win11系统。下载后先看完视频激活教程,再进行操作,100%激活成功。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号