本文围绕天池贷款违约预测赛题,介绍零基础入门金融风控的实现过程。使用超过120万条贷款记录数据,对比多种数据不平衡处理方法,以CatBoost为基分类器,经5折交叉验证,结合过采样的模型线上表现较好(AUC 0.7347),SMOTE和BalanceCascade效果欠佳,为相关任务提供参考。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜
![【金融风控系列】_[1]_贷款违约预测 - php中文网](https://img.php.cn/upload/article/202507/21/2025072117310075200.jpg)
该数据来自某信贷平台的贷款记录,总数据量超过120w,包含47列变量信息,其中15列为匿名变量。为了保证比赛的公平性,将会从中抽取80万条作为训练集,20万条作为测试集A,20万条作为测试集B,同时会对employmentTitle、purpose、postCode和title等信息进行脱敏。
| Field | Description |
|---|---|
| id | 为贷款清单分配的唯一信用证标识 |
| loanAmnt | 贷款金额 |
| term | 贷款期限(year) |
| interestRate | 贷款利率 |
| installment | 分期付款金额 |
| grade | 贷款等级 |
| subGrade | 贷款等级之子级 |
| employmentTitle | 就业职称 |
| employmentLength | 就业年限(年) |
| homeOwnership | 借款人在登记时提供的房屋所有权状况 |
| annualIncome | 年收入 |
| verificationStatus | 验证状态 |
| issueDate | 贷款发放的月份 |
| purpose | 借款人在贷款申请时的贷款用途类别 |
| postCode | 借款人在贷款申请中提供的邮政编码的前3位数字 |
| regionCode | 地区编码 |
| dti | 债务收入比 |
| delinquency_2years | 借款人过去2年信用档案中逾期30天以上的违约事件数 |
| ficoRangeLow | 借款人在贷款发放时的fico所属的下限范围 |
| ficoRangeHigh | 借款人在贷款发放时的fico所属的上限范围 |
| openAcc | 借款人信用档案中未结信用额度的数量 |
| pubRec | 贬损公共记录的数量 |
| pubRecBankruptcies | 公开记录清除的数量 |
| revolBal | 信贷周转余额合计 |
| revolUtil | 循环额度利用率,或借款人使用的相对于所有可用循环信贷的信贷金额 |
| totalAcc | 借款人信用档案中当前的信用额度总数 |
| initialListStatus | 贷款的初始列表状态 |
| applicationType | 表明贷款是个人申请还是与两个共同借款人的联合申请 |
| earliesCreditLine | 借款人最早报告的信用额度开立的月份 |
| title | 借款人提供的贷款名称 |
| policyCode | 公开可用的策略_代码=1新产品不公开可用的策略_代码=2 |
| n系列匿名特征 | 匿名特征n0-n14,为一些贷款人行为计数特征的处理 |
[1] https://github.com/caozichuan/TianChi_loadDefault/blob/main/GitHub_loadDefault/model/xgb_github.ipynb
[2] https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.21852664.0.0.4f70379c1gFeCt&postId=129321
[3] https://imbalanced-ensemble.readthedocs.io/en/latest/index.html
[4] https://blog.csdn.net/qq_31367861/article/details/111145816?spm=5176.21852664.0.0.22686e12UZfkmZ
文献4方法线上提交分数为0.7391
[5] https://blog.csdn.net/qq_44694861/article/details/109753004?spm=5176.21852664.0.0.667f4288swn2OQ
使用的方法如下:
SMOTE(Synthetic Minority Oversampling Technique),合成少数类过采样技术.它是基于随机过采样算法的一种改进方案,为了克服随机过采样算法泛化能力差的缺点,SMOTE算法的对少数类样本近邻进行采样,根据少数类样本人工合成新样本添加到数据集中。
Liu Z , Cao W , Gao Z , et al. Self-paced Ensemble for Highly Imbalanced Massive Data Classification[J]. 2019.
重复正样本,使得正样本与负样本比例接近 1 : 1
从数量多的样本里面随机选择样本进行抛弃,为了避免随机性影响,我们独立训练多个模型进行简单平均
Liu, X. Y., Wu, J., & Zhou, Z. H. “Exploratory undersampling for class-imbalance learning.” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39.2 (2008): 539-550
#!pip install pandas --user#!pip install lightgbm --user#!pip install xgboost --user!pip install catboost --user !pip install joblib --user !pip install scikit-learn --user !pip install imblearn --user !pip install imbalanced-ensemble --user !pip self-paced-ensemble --user
import pandas as pdimport datetimeimport warnings
warnings.filterwarnings('ignore')from sklearn.model_selection import StratifiedKFold#warnings.filterwarnings('ignore')#%matplotlib inlinefrom sklearn.metrics import roc_auc_score## 数据降维处理的from sklearn.model_selection import train_test_split
from catboost import CatBoostClassifierimport imbalanced_ensemble as imbensfrom collections import Counterfrom imbalanced_ensemble.sampler.over_sampling import SMOTE
import numpy as np
train=pd.read_csv("./data/data53042/train.csv")
testA=pd.read_csv("./data/data53042/testA.csv")
numerical_fea = list(train.select_dtypes(exclude=['object']).columns)
category_fea = list(filter(lambda x: x not in numerical_fea,list(train.columns)))
label = 'isDefault'numerical_fea.remove(label)#按照中位数填充数值型特征train[numerical_fea] = train[numerical_fea].fillna(train[numerical_fea].median())
testA[numerical_fea] = testA[numerical_fea].fillna(testA[numerical_fea].median())#按照众数填充类别型特征train[category_fea] = train[category_fea].fillna(train[category_fea].mode())
testA[category_fea] = testA[category_fea].fillna(testA[category_fea].mode())def make_fea(data):
data['issueDate'] = pd.to_datetime(data['issueDate'],format='%Y-%m-%d')
startdate = datetime.datetime.strptime('2007-06-01', '%Y-%m-%d') #构造时间特征
data['issueDateDT'] = data['issueDate'].apply(lambda x: x-startdate).dt.days
data['grade'] = data['grade'].map({'A':1,'B':2,'C':3,'D':4,'E':5,'F':6,'G':7})
data['subGrade'] = data['subGrade'].map({'E2':1,'D2':2,'D3':3,'A4':4,'C2':5,'A5':6,'C3':7,'B4':8,'B5':9,'E5':10, 'D4':11,'B3':12,'B2':13,'D1':14,'E1':15,'C5':16,'C1':17,'A2':18,'A3':19,'B1':20, 'E3':21,'F1':22,'C4':23,'A1':24,'D5':25,'F2':26,'E4':27,'F3':28,'G2':29,'F5':30, 'G3':31,'G1':32,'F4':33,'G4':34,'G5':35})
data = pd.get_dummies(data, columns=['subGrade', 'homeOwnership', 'verificationStatus', 'purpose', 'regionCode'], drop_first=True)
data['employmentLength'] = data['employmentLength'].map({'NaN':-1,'1 year':1,'2 years':2,'3 years':3,'4 years':4,'5 years':5,'6 years':6,'7 years':7,'8 years':8,'9 years':9,'10+ years':10,'< 1 year':0})
data['earliesCreditLine'] = data['earliesCreditLine'].apply(lambda s: int(s[-4:])) for item in ['n0','n1','n2','n2.1','n4','n5','n6','n7','n8','n9','n10','n11','n12','n13','n14']:
data['grade_to_mean_' + item] = data['grade'] / data.groupby([item])['grade'].transform('mean')
data['grade_to_std_' + item] = data['grade'] / data.groupby([item])['grade'].transform('std')
data['n15']=data['n8']*data['n10'] return data# 特征工程 简单处理train = make_fea(train)
testA = make_fea(testA)print(train.shape)print(testA.shape)print("数据预处理完成!")
sub=testA[['id']].copy()
sub['isDefault']=0testA=testA.drop(['id','issueDate'],axis=1)
data_x=train.drop(['isDefault','id','issueDate'],axis=1)
data_y=train[['isDefault']].copy()
col=['grade','subGrade','employmentTitle','homeOwnership','verificationStatus','purpose','postCode','regionCode', 'initialListStatus','applicationType','policyCode']for i in data_x.columns: if i in col:
data_x[i] = data_x[i].astype('str')for i in testA.columns: if i in col:
testA[i] = testA[i].astype('str')
answers = []
mean_score = 0n_folds = 5sk = StratifiedKFold(n_splits=n_folds, shuffle=True, random_state=2019)print(data_x.shape)print(testA.shape)# 在测试集中有部分特征训练集中没有,进行处理COLNAME = data_x.columns
testA = testA[COLNAME]# 处理INF NAN ,替换成 -1 注意:np.inf和-np.inf是不同的两个值,这里经常遇到忘记处理后者引发错误data_x.replace([np.inf, -np.inf, np.nan], -1, inplace=True)
testA.replace([np.inf, -np.inf, np.nan], -1, inplace=True)# -----重复正样本,因为原始数据比例约为3:1 因此对正样本重复三次拼接到原始数据中-----a = [i for i, x in enumerate(data_y.values) if x[0]==1]
all_1 = data_x.iloc[a]
all_y = pd.DataFrame(np.ones(all_1.shape[0],dtype=int),columns=['isDefault'])print(all_y.shape)print(data_x.shape,data_y.shape)for i in range(3):
data_y= pd.concat([data_y,all_y],axis=0)
data_x = pd.concat([data_x,all_1],axis=0) print(data_x.shape,data_y.shape)
data_x.reset_index(drop=True,inplace =True)
data_y.reset_index(drop=True,inplace =True)'''
# -----使用SMOTE算法对负样本进行扩充-----
sm = SMOTE(random_state=42)
data_x, data_y = sm.fit_resample(data_x, data_y)
print('Resampled dataset' , data_y.value_counts())
'''使用CatBoost分类模型作为基准模型
model=CatBoostClassifier(
loss_function="Logloss",
eval_metric="AUC",
task_type="CPU",
learning_rate=0.1,
iterations=500,
random_seed=2020,
verbose=500,
depth=7)for train, test in sk.split(data_x, data_y):
x_train = data_x.iloc[train]
y_train = data_y.iloc[train]
x_test = data_x.iloc[test]
y_test = data_y.iloc[test] '''
# -----使用SPE 算法对不平衡数据进行处理-----
clf = imbens.ensemble.SelfPacedEnsembleClassifier(
base_estimator = model,#基准分类模型 可以自定义,需要模型包含fit等方法,具体信息请查看参考文献3
n_estimators = 5,
random_state=49
).fit(x_train, y_train)
'''
# -----使用BalanceCascade 算法对不平衡数据进行处理-----
'''
clf = imbens.ensemble.BalanceCascadeClassifier(
base_estimator = model,#基准分类模型 可以自定义,需要模型包含fit等方法,具体信息请查看参考文献3
n_estimators = 5,
random_state=49
).fit(x_train, y_train)
'''
# 基准分类模型
clf = model.fit(x_train,y_train)#, eval_set=(x_test,y_test),cat_features=col)
yy_pred_valid=clf.predict_proba(x_test)[:,-1] print('cat验证的auc:{}'.format(roc_auc_score(y_test, yy_pred_valid)))
mean_score += roc_auc_score(y_test, yy_pred_valid) / n_folds
y_pred_valid = clf.predict_proba(testA)[:,-1]
answers.append(y_pred_valid)print('mean valAuc:{}'.format(mean_score))
cat_pre=sum(answers)/n_folds
sub['isDefault']=cat_pre
sub.to_csv('金融预测.csv',index=False)model=CatBoostClassifier(
loss_function="Logloss",
eval_metric="AUC",
task_type="CPU",
learning_rate=0.1,
iterations=500,
random_seed=2020,
verbose=500,
depth=7)#----- 欠采样模型 -----a = [i for i, x in enumerate(data_y.values) if x[0]==1]
all_1 = data_x.iloc[a]
all_y1 = pd.DataFrame(np.ones(all_1.shape[0]),columns=['isDefault'])
all_y0 = pd.DataFrame(np.ones(all_y.shape[0]),columns=['isDefault'])print(all_y1.shape)#for i in range(4): # 数据比1:4+i= 0all_0 = data_x.iloc[i*all_y1.shape[0]:(i+1)*all_y1.shape[0],:]
data_y_= pd.concat([all_y1,all_y0],axis=0)
data_x_ = pd.concat([all_1,all_0],axis=0)print(data_x_.shape,data_y_.shape,all_0.shape)for train, test in sk.split(data_x, data_y):
x_train = data_x.iloc[train]
y_train = data_y.iloc[train]
x_test = data_x.iloc[test]
y_test = data_y.iloc[test] # 基准分类模型
#clf = model.fit(x_train,y_train)#, eval_set=(x_test,y_test),cat_features=col)
clf = imbens.ensemble.SelfPacedEnsembleClassifier(
base_estimator = model,#基准分类模型 可以自定义,需要模型包含fit等方法,具体信息请查看参考文献3
n_estimators = 5,
random_state=49
).fit(x_train, y_train)
yy_pred_valid=clf.predict_proba(x_test)[:,-1] print('cat验证的auc:{}'.format(roc_auc_score(y_test, yy_pred_valid)))
mean_score += roc_auc_score(y_test, yy_pred_valid) / n_folds
y_pred_valid = clf.predict_proba(testA)[:,-1]
answers.append(y_pred_valid)print('mean valAuc:{}'.format(mean_score))
cat_pre=sum(answers)/(n_folds) # 数据比1:4sub['isDefault']=cat_pre
sub.to_csv('金融预测.csv',index=False)本项目主要以CBT算法为基分类器对比了几种常用的数据不平衡的处理效果,关于数据特征构建的知识可以查看开头参考文献。
| 数据集 | TIANCHI-贷款违约预测(ONLine) |
|---|---|
| 比例 | 4.01(80W) |
| 指标 | AUC(线下五折验证/线上) |
| CaTBoost+SPE(5) | 0.7348/0.7328 |
| CaTBoost | 0.7354/0.7338 |
| CaTBoost+SMOTE | 0.9334/0.6949 |
| CaTBoost+过采样 | 0.7477/0.7346 |
| CaTBoost+欠采样 | 0.7354/0.7338 |
| CaTBoost+BalanceCascade(5) | 0.6052/0.6032 |
| CaTBoost+SPE(5)+过采样 | 0.7485/0.7347 |
imbalanced-ensemble库中包含了许多其他的非平衡算法,有兴趣的同学可以关注参考文献[3]
以上就是【金融风控系列】_[1]_贷款违约预测的详细内容,更多请关注php中文网其它相关文章!
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号