百度网盘AI大赛-图像处理挑战赛:文档检测优化赛 Baseline

P粉084495128
发布: 2025-07-22 09:59:56
原创
772人浏览过
该内容围绕百度网盘AI大赛文档检测优化赛展开,介绍用Resnet152+Linear网络结构回归文档拐角坐标的方案。包括获取数据、构造含预处理的读取器、定义网络,训练时经多轮训练及调学习率达0.89左右精度,还涉及打包提交文件的相关说明。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

百度网盘ai大赛-图像处理挑战赛:文档检测优化赛 baseline - php中文网

百度网盘AI大赛-图像处理挑战赛:文档检测优化赛

使用Resnet152回归图像中文档的拐角坐标完成百度网盘AI大赛-图像处理挑战赛:文档检测优化赛。

比赛介绍

生活中人们使用手机进行文档扫描逐渐成为一件普遍的事情,为了提高人们的使用体验,我们期望通过算法技术去除杂乱的拍摄背景并精准框取文档边缘,选手需要通过深度学习技术训练模型,对给定的真实场景下采集得到的带有拍摄背景的文件图片进行边缘智能识别,并最终输出处理后的扫描结果图片。

评测方式说明

  1. 参赛选手提交的代码和模型只预测文档边缘的heatmap图,由后台评测脚本中预置的算法回归出文档区域的四个角的坐标点,并生成规则的四边形,与GT计算IoU值;
  2. 参赛选手提交的代码和模型直接回归文档区域的四个角的坐标点,并生成规则的四边形,与GT计算IoU值。 注:两种评测方式的结果会放在一个排行榜内,评测脚本中预置的角点回归算法会存在一定的局限性,如果各位参赛选手希望获得更高的分数,建议采用第二种评测方式。

任务分析

本次比赛要求选手设计算法在给定图片中划定一块四边形区域,以尽可能与图片中的文档部分重合。

因此,本次任务可以同时看作回归问题和分割问题。

  • 作为回归问题,需要设计学习器/其他方法寻找四边形的四个拐角坐标
  • 作为分割问题,直接将数据中的segments作为标签训练对应的分割学习器即可

本项目将本次任务看作回归问题来处理,使用Resnet152+Linear的网络结构回归四个角的坐标。

代码部分

获取数据

In [ ]
! wget https://staticsns.cdn.bcebos.com/amis/2022-4/1649731549425/train_datasets_document_detection_0411.zip! unzip -oq /home/aistudio/train_datasets_document_detection_0411.zip! rm -rf __MACOSX
! rm -rf /home/aistudio/train_datasets_document_detection_0411.zip
登录后复制
   

构造数据读取器

通过paddle.io.dataset构造读取器,便于读取数据。

数据预处理包括:

因赛AIGC
因赛AIGC

因赛AIGC解决营销全链路应用场景

因赛AIGC 73
查看详情 因赛AIGC
  1. 根据data_info的边缘轮廓信息分别提取四个拐角的位置。
  2. 对图片进行resize和数据增强(调整明暗对比度等参数)
In [ ]
import paddleimport numpy as npimport pandas as pdimport cv2class MyDateset(paddle.io.Dataset):
    def __init__(self, mode = 'train', train_imgs_dir = '/home/aistudio/train_datasets_document_detection_0411/images/', train_txt = '/home/aistudio/train_datasets_document_detection_0411/data_info.txt'):
        super(MyDateset, self).__init__()

        self.mode = mode 
        self.train_imgs_dir = train_imgs_dir        with open(train_txt,'r') as f:
            self.train_infor = f.readlines()    def __getitem__(self, index):
        item = self.train_infor[index][:-1]
        splited = item.split(',')
        img_name = splited[0]

        img = cv2.imread(self.train_imgs_dir+img_name+'.jpg')
        h, w, c = img.shape

        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)        
        # 对图片进行resize,调整明暗对比度等参数
        img = paddle.vision.transforms.resize(img, (512,512), interpolation='bilinear')        if np.random.rand()<1/3:
            img = paddle.vision.transforms.adjust_brightness(img, np.random.rand()*2)        else:            if np.random.rand()<1/2:
                img = paddle.vision.transforms.adjust_contrast(img, np.random.rand()*2)            else:
                img = paddle.vision.transforms.adjust_hue(img, np.random.rand()-0.5)

        img = img.transpose((2,0,1))
        img = img/255

        sites = []        for i in range(1,len(splited),2):
            sites.append([float(splited[i])/w,float(splited[i+1])/h])
        
        label = []        for i in range(4):
            x, y = self.get_corner(sites, i+1)
            label.append(x)
            label.append(y)

        img = paddle.to_tensor(img).astype('float32')
        label = paddle.to_tensor(label).astype('float32')        return img, label    def get_corner(self, sites, corner_flag):
        # corner_flag 1:top_left 2:top_right 3:bottom_right 4:bottom_left
        if corner_flag == 1:
            target_sites = [0,0]        elif corner_flag == 2 :
            target_sites = [1,0]        elif corner_flag == 3 :
            target_sites = [1,1]        elif corner_flag == 4 :
            target_sites = [0,1]

        min_dis = 3
        best_x = 0
        best_y = 0
        for site in sites:            if abs(site[0]-target_sites[0])+abs(site[1]-target_sites[1])<min_dis:
                min_dis=abs(site[0]-target_sites[0])+abs(site[1]-target_sites[1])
                best_x = site[0]
                best_y = site[1]        
        return best_x, best_y    def __len__(self):
        return len(self.train_infor)# 对dataloader进行测试'''
train_dataset=MyDateset()

train_dataloader = paddle.io.DataLoader(
    train_dataset,
    batch_size=16,
    shuffle=True,
    drop_last=False)

for step, data in enumerate(train_dataloader):
    img, label = data
    print(step, img.shape, label.shape)
    break

'''
登录后复制
   

定义网络结构

In [ ]
class MyNet(paddle.nn.Layer):
    def __init__(self):
        super(MyNet,self).__init__()
        self.resnet = paddle.vision.models.resnet152(pretrained=True, num_classes=0)
        self.flatten = paddle.nn.Flatten()
        self.linear = paddle.nn.Linear(2048, 8)    def forward(self, img):
        y = self.resnet(img)
        y = self.flatten(y)
        out = self.linear(y)        return out
登录后复制
   

训练

第一次训练后参数为0.66左右,重复训练+调整学习率可以达到0.89左右。

In [ ]
model = MyNet()
model.train()

train_dataset=MyDateset()# 需要接续之前的模型重复训练可以取消注释# param_dict = paddle.load('./model.pdparams')# model.load_dict(param_dict)train_dataloader = paddle.io.DataLoader(
    train_dataset,
    batch_size=16,
    shuffle=True,
    drop_last=False)

max_epoch=10scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.0001, T_max=max_epoch)
opt = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters())

now_step=0for epoch in range(max_epoch):    for step, data in enumerate(train_dataloader):
        now_step+=1

        img, label = data
        pre = model(img)
        loss = paddle.nn.functional.square_error_cost(pre,label).mean()
        loss.backward()
        opt.step()
        opt.clear_gradients()        if now_step%100==0:            print("epoch: {}, batch: {}, loss is: {}".format(epoch, step, loss.mean().numpy()))

paddle.save(model.state_dict(), 'model.pdparams')
登录后复制
   

打包提交

本题目提交需要提交对应的模型和预测文件。predict.py需要读取同目录下的模型信息,并预测坐标点-保存为json或预测分割后的图片-保存为图片形式。

想要自定义训练模型,只需要将predict.py中的模型和process函数中的do something 替换为自己的模型内容即可。

提交分割模型时,取消predict中52行的注释部分即可保存分割后的图片信息

如果不想自己反复训练模型可以直接从fork后就有的model.pdparams文件开始训练,这个模型精度为0.88~

In [ ]
# 压缩可提交文件! zip submit.zip model.pdparams predict.py
登录后复制
   

以上就是百度网盘AI大赛-图像处理挑战赛:文档检测优化赛 Baseline的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号