0

0

【Paddle-CLIP】使用 CLIP 模型进行图像识别

P粉084495128

P粉084495128

发布时间:2025-07-22 16:07:05

|

512人浏览过

|

来源于php中文网

原创

引入

  • 上回介绍了如何搭建模型并加载参数进行模型测试
  • 本次就详细介绍一下 CLIP 模型的各种使用

CLIP 模型的用途

项目说明

  • 项目 GitHub:【Paddle-CLIP】
  • 有关模型的相关细节,请看上一个项目:【Paddle2.0:复现 OpenAI CLIP 模型】

安装 Paddle-CLIP

In [ ]
!pip install paddleclip
   

加载模型

  • 首次加载会自动下载预训练模型,请耐心等待
In [ ]
import paddlefrom PIL import Imagefrom clip import tokenize, load_model

model, transforms = load_model('ViT_B_32', pretrained=True)
   

图像识别

  • 使用预训练模型输出各种候选标签的概率
In [ ]
# 设置图片路径和标签img_path = "apple.jpeg"labels = ['apple', 'fruit', 'pear', 'peach']# 准备输入数据img = Image.open(img_path)
display(img)
image = transforms(Image.open(img_path)).unsqueeze(0)
text = tokenize(labels)# 计算特征with paddle.no_grad():
    logits_per_image, logits_per_text = model(image, text)
    probs = paddle.nn.functional.softmax(logits_per_image, axis=-1)# 打印结果for label, prob in zip(labels, probs.squeeze()):    print('该图片为 %s 的概率是:%.02f%%' % (label, prob*100.))
       
               
该图片为 apple 的概率是:83.19%
该图片为 fruit 的概率是:1.25%
该图片为 pear 的概率是:6.71%
该图片为 peach 的概率是:8.84%
       
In [ ]
# 设置图片路径和标签img_path = "fruit.jpg"labels = ['apple', 'fruit', 'pear', 'peach']# 准备输入数据img = Image.open(img_path)
display(img)
image = transforms(Image.open(img_path)).unsqueeze(0)
text = tokenize(labels)# 计算特征with paddle.no_grad():
    logits_per_image, logits_per_text = model(image, text)
    probs = paddle.nn.functional.softmax(logits_per_image, axis=-1)# 打印结果for label, prob in zip(labels, probs.squeeze()):    print('该图片为 %s 的概率是:%.02f%%' % (label, prob*100.))
       
               
该图片为 apple 的概率是:8.52%
该图片为 fruit 的概率是:90.30%
该图片为 pear 的概率是:0.98%
该图片为 peach 的概率是:0.21%
       

Zero-Shot

  • 使用 Cifar100 的测试集测试零次学习
In [1]
import paddlefrom clip import tokenize, load_modelfrom paddle.vision.datasets import Cifar100# 加载模型model, transforms = load_model('ViT_B_32', pretrained=True)# 加载 Cifar100 数据集cifar100 = Cifar100(mode='test', backend='pil')
classes = [    'apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 
    'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 
    'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 
    'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'keyboard', 
    'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 
    'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 
    'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 
    'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 
    'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 
    'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm']# 准备输入数据image, class_id = cifar100[3637]
display(image)
image_input = transforms(image).unsqueeze(0)
text_inputs = tokenize(["a photo of a %s" % c for c in classes])# 计算特征with paddle.no_grad():
    image_features = model.encode_image(image_input)
    text_features = model.encode_text(text_inputs)# 筛选 Top_5image_features /= image_features.norm(axis=-1, keepdim=True)
text_features /= text_features.norm(axis=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.t())
similarity = paddle.nn.functional.softmax(similarity, axis=-1)
values, indices = similarity[0].topk(5)# 打印结果for value, index in zip(values, indices):    print('该图片为 %s 的概率是:%.02f%%' % (classes[index], value*100.))
       
Cache file /home/aistudio/.cache/paddle/dataset/cifar/cifar-100-python.tar.gz not found, downloading https://dataset.bj.bcebos.com/cifar/cifar-100-python.tar.gz 
Begin to download

Download finished
       
               
该图片为 snake 的概率是:65.31%
该图片为 turtle 的概率是:12.29%
该图片为 sweet_pepper 的概率是:3.83%
该图片为 lizard 的概率是:1.88%
该图片为 crocodile 的概率是:1.75%
       

逻辑回归

  • 使用模型的图像编码和标签进行逻辑回归训练
  • 使用的数据集依然是 Cifar100
In [ ]
import osimport paddleimport numpy as npfrom tqdm import tqdmfrom paddle.io import DataLoaderfrom clip import tokenize, load_modelfrom paddle.vision.datasets import Cifar100from sklearn.linear_model import LogisticRegression# 加载模型model, transforms = load_model('ViT_B_32', pretrained=True)# 加载数据集train = Cifar100(mode='train', transform=transforms, backend='pil')
test = Cifar100(mode='test', transform=transforms, backend='pil')# 获取特征def get_features(dataset):
    all_features = []
    all_labels = []    
    with paddle.no_grad():        for images, labels in tqdm(DataLoader(dataset, batch_size=100)):
            features = model.encode_image(images)
            all_features.append(features)
            all_labels.append(labels)    return paddle.concat(all_features).numpy(), paddle.concat(all_labels).numpy()# 计算并获取特征train_features, train_labels = get_features(train)
test_features, test_labels = get_features(test)# 逻辑回归classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1, n_jobs=-1)
classifier.fit(train_features, train_labels)# 模型评估predictions = classifier.predict(test_features)
accuracy = np.mean((test_labels == predictions).astype(np.float)) * 100.# 打印结果print(f"Accuracy = {accuracy:.3f}")
       
/home/aistudio/Paddle-CLIP
Accuracy = 79.900
       

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

44

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

58

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

11

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

36

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

21

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.8万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号