0

0

基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测

P粉084495128

P粉084495128

发布时间:2025-07-23 09:25:09

|

999人浏览过

|

来源于php中文网

原创

本文介绍利用PaddleX2.0快速上手PP-PicoDet模型训练,以绝缘子缺陷检测为例。先说明项目背景,即绝缘子故障的危害及无人机巡检结合深度学习的新思路。接着介绍PaddleX和PP-PicoDet算法,再阐述项目内容,包括环境配置、数据准备、模型训练等,最终模型mAP达90.91,检测效果佳。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddlex2.0-picodet实现高压输电线路绝缘子缺陷检测 - php中文网

PaddleX2.0快速上手PP-PicoDet模型训练


一、项目背景

电力不仅关系国家经济安全而且与人类社会进步密切相关,而绝缘子作为一种广泛应用于高压输电线路中起到电气绝缘和导线连接的重要设备,由于长期暴露在恶劣环境中可能引起绝缘子磨损、自爆等故障,也可能引起一系列级联故障,对电力系统安全稳定运行构成了严重威胁。相对于传统的输电线路巡检方式,无人机自主巡检技术以其操作简单、安全可靠等优点逐渐被人们所青睐。与此同时,随着计算机的计算能力不断提升,机器学习特别是深度学习方法在处理这种复杂计算机视觉任务取得了不错的成绩,被广泛应用于即时视觉翻译、无人驾驶、视频监控等领域,为我们的输电线路绝缘子故障检测提供了新思路,但当前用深度学习的方法对输电线路绝缘子故障检测仍然处在起步阶段,考虑到绝缘子这类背景较为复杂,缺陷故障处尺寸较小等特点开展了以下工作: 本项目使用PaddleX快速实现PP-Picodet绝缘子缺陷目标检测算法,该算法改善分类分数和定位精度之间不匹配的问题,出色的完成了绝缘子故障检测任务。

基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测 - php中文网        

二、PaddleX 介绍

PaddleX 集成飞桨智能视觉领域图像分类、目标检测、语义分割、实例分割任务能力,将深度学习开发全流程从数据准备、模型训练与优化到多端部署端到端打通,并提供统一任务API接口及图形化开发界面Demo。开发者无需分别安装不同套件,以低代码的形式即可快速完成飞桨全流程开发。PaddleX 经过质检、安防、巡检、遥感、零售、医疗等十多个行业实际应用场景验证,沉淀产业实际经验,并提供丰富的案例实践教程,全程助力开发者产业实践落地。

模型丰富: 包含目标检测、实例分割、人脸检测、关键点检测、多目标跟踪等250+个预训练模型,涵盖多种全球竞赛冠军方案。

使用简洁: 模块化设计,解耦各个网络组件,开发者轻松搭建、试用各种检测模型及优化策略,快速得到高性能、定制化的算法。

端到端打通: 从数据增强、组网、训练、压缩、部署端到端打通,并完备支持云端/边缘端多架构、多设备部署。

高性能: 基于飞桨的高性能内核,模型训练速度及显存占用优势明显。支持FP16训练, 支持多机训练。

基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测 - php中文网        

三、PP-PicoDet算法介绍

基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测 - php中文网        

PaddleX中推出了最新系列的移动端SOTA模型:PP-PicoDet,具体技术细节可以阅读arXiv文章,PP-PicoDet的特色如下:

  • 精度高:PicoDet-S仅1M参数量以内,416输入COCO mAP达到30.6;PicoDet-L仅3.3M参数量以内,640输入COCO mAP达到40.9。是全网新SOTA移动端检测模型。
  • 速度快:PicoDet-S-320在SD865上可达150FPS;PicoDet-L-640模型接近服务器端模型精度前提下,在移动端可达20FPS实时预测。
  • 部署友好:支持Paddle Inference、Paddle Lite;支持快速导出为ONNX格式,可用于Openvino、NCNN、MNN部署;支持Python、C++、Android 部署。

具体的指标对比如下图所示:

BlackBox AI
BlackBox AI

AI编程助手,智能对话问答助手

下载
基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测 - php中文网        

四、项目内容


该项目内容主要包括环境的配置,数据的准备,配置文件的修改,模型训练,模型评估,模型推理测试等

4.1环境配置

安装PaddleX的依赖,这里使用的Paddle版本为paddlepaddle-gpu2.3

In [ ]
!unzip -oq /home/aistudio/data/data122549/insulator.zip
   
In [2]
!pip install paddlex
   

4.2准备数据集

由于相关的数据集较少,数据集里面包括600张高压输电线路缺损的绝缘子图片,使用Labelme进行标注,生成voc格式数据集。

4.3划分数据集

下面这段代码,只需要一行代码就可以将数据集进行划分

In [ ]
!paddlex --split_dataset --format voc --dataset_dir insulator/ --val_value 0.2
   
2022-05-17 21:58:26 [INFO]	Dataset split starts...
2022-05-17 21:58:26 [INFO]	Dataset split done.
2022-05-17 21:58:26 [INFO]	Train samples: 480
2022-05-17 21:58:26 [INFO]	Eval samples: 120
2022-05-17 21:58:26 [INFO]	Test samples: 0
2022-05-17 21:58:26 [INFO]	Split files saved in insulator/
   

4.4开始训练

In [2]
import paddlex as pdxfrom paddlex import transforms as T# 定义训练和验证时的transforms# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/transforms/transforms.mdtrain_transforms = T.Compose([
    T.RandomCrop(), T.RandomHorizontalFlip(), T.RandomDistort(),
    T.BatchRandomResize(
        target_sizes=[576, 608, 640, 672, 704], interp='RANDOM'), T.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])

eval_transforms = T.Compose([
    T.Resize(
        target_size=640, interp='CUBIC'), T.Normalize(
            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 定义训练和验证所用的数据集# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/datasets.mdtrain_dataset = pdx.datasets.VOCDetection(
    data_dir='insulator/',
    file_list='insulator/train_list.txt',
    label_list='insulator/labels.txt',
    transforms=train_transforms,
    shuffle=True)

eval_dataset = pdx.datasets.VOCDetection(
    data_dir='insulator/',
    file_list='insulator/val_list.txt',
    label_list='insulator/labels.txt',
    transforms=eval_transforms,
    shuffle=False)# 初始化模型,并进行训练# 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/visualdl.mdnum_classes = len(train_dataset.labels)
model = pdx.det.PicoDet(num_classes=num_classes, backbone='ESNet_l')# API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/apis/models/detection.md# 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/parameters.mdmodel.train(
    num_epochs=100,
    train_dataset=train_dataset,
    train_batch_size=16,
    eval_dataset=eval_dataset,
    pretrain_weights='COCO',
    learning_rate=.01,
    warmup_steps=24,
    warmup_start_lr=0.005,
    save_interval_epochs=1,
    lr_decay_epochs=[6, 8, 11],
    use_ema=True,
    save_dir='output/picodet_esnet_l',
    use_vdl=True)
   
2022-05-17 23:11:24 [INFO]	[TRAIN] Epoch=100/100, Step=10/30, loss_vfl=0.254778, loss_bbox=0.141798, loss_dfl=0.144734, loss=0.541310, lr=0.000001, time_each_step=1.01s, eta=0:0:20
2022-05-17 23:11:33 [INFO]	[TRAIN] Epoch=100/100, Step=20/30, loss_vfl=0.220718, loss_bbox=0.106215, loss_dfl=0.138743, loss=0.465676, lr=0.000000, time_each_step=0.9s, eta=0:0:8
2022-05-17 23:11:43 [INFO]	[TRAIN] Epoch=100/100, Step=30/30, loss_vfl=0.199835, loss_bbox=0.107801, loss_dfl=0.129731, loss=0.437366, lr=0.000000, time_each_step=0.98s, eta=0:0:0
2022-05-17 23:11:43 [INFO]	[TRAIN] Epoch 100 finished, loss_vfl=0.23382486, loss_bbox=0.1168754, loss_dfl=0.13827847, loss=0.48897874 .
2022-05-17 23:11:44 [WARNING]	Detector only supports single card evaluation with batch_size=1 during evaluation, so batch_size is forcibly set to 1.
2022-05-17 23:11:44 [INFO]	Start to evaluate(total_samples=120, total_steps=120)...
2022-05-17 23:11:52 [INFO]	Accumulating evaluatation results...
2022-05-17 23:11:52 [INFO]	[EVAL] Finished, Epoch=100, bbox_map=90.191388 .
2022-05-17 23:11:52 [INFO]	Current evaluated best model on eval_dataset is epoch_4, bbox_map=90.9090909090909
2022-05-17 23:11:53 [INFO]	Model saved in output/picodet_esnet_l/epoch_100.
   

4.5训练可视化

最终训练结果map=90.91,训练的效果非常不错,可以达到应用级的效果基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测 - php中文网        

4.6模型测试

使用模型进行预测,同时使用pdx.det.visualize将结果可视化,可视化结果将保存到./output/picodet_esnet_l下,其中threshold代表Box的置信度阈值,将Box置信度低于该阈值的框过滤不进行可视化。

In [3]
import paddlex as pdx
model = pdx.load_model('output/picodet_esnet_l/best_model')
image_name = 'insulator/JPEGImages/0069.jpg'result = model.predict(image_name)
pdx.det.visualize(image_name, result, threshold=0.5, save_dir='./output/')
   

4.7模型测试结果可视化


可以发现模型很好的检测出了高压输电线路中的绝缘子缺陷

基于PaddleX2.0-PicoDet实现高压输电线路绝缘子缺陷检测 - php中文网        

相关专题

更多
python开发工具
python开发工具

php中文网为大家提供各种python开发工具,好的开发工具,可帮助开发者攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。php中文网还为大家带来python相关课程以及相关文章等内容,供大家免费下载使用。

755

2023.06.15

python打包成可执行文件
python打包成可执行文件

本专题为大家带来python打包成可执行文件相关的文章,大家可以免费的下载体验。

636

2023.07.20

python能做什么
python能做什么

python能做的有:可用于开发基于控制台的应用程序、多媒体部分开发、用于开发基于Web的应用程序、使用python处理数据、系统编程等等。本专题为大家提供python相关的各种文章、以及下载和课程。

758

2023.07.25

format在python中的用法
format在python中的用法

Python中的format是一种字符串格式化方法,用于将变量或值插入到字符串中的占位符位置。通过format方法,我们可以动态地构建字符串,使其包含不同值。php中文网给大家带来了相关的教程以及文章,欢迎大家前来阅读学习。

618

2023.07.31

python教程
python教程

Python已成为一门网红语言,即使是在非编程开发者当中,也掀起了一股学习的热潮。本专题为大家带来python教程的相关文章,大家可以免费体验学习。

1262

2023.08.03

python环境变量的配置
python环境变量的配置

Python是一种流行的编程语言,被广泛用于软件开发、数据分析和科学计算等领域。在安装Python之后,我们需要配置环境变量,以便在任何位置都能够访问Python的可执行文件。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

547

2023.08.04

python eval
python eval

eval函数是Python中一个非常强大的函数,它可以将字符串作为Python代码进行执行,实现动态编程的效果。然而,由于其潜在的安全风险和性能问题,需要谨慎使用。php中文网给大家带来了相关的教程以及文章,欢迎大家前来学习阅读。

577

2023.08.04

scratch和python区别
scratch和python区别

scratch和python的区别:1、scratch是一种专为初学者设计的图形化编程语言,python是一种文本编程语言;2、scratch使用的是基于积木的编程语法,python采用更加传统的文本编程语法等等。本专题为大家提供scratch和python相关的文章、下载、课程内容,供大家免费下载体验。

707

2023.08.11

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.8万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号