本项目使用人工神经网络完成蒸汽量回归预测,包括数据处理、异常值处理、相关性分析、模型构建、模型训练、模型预测等步骤。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。
数据集各个字段以及数据类型如下所示:
| V0 | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | ... | V36 | V37 | target |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| float | float | float | float | float | float | float | float | float | float | float | float | float | float |
pip install missingno -q
Note: you may need to restart the kernel to use updated packages.
import numpy as np import pandas as pd import matplotlib.pyplot as pltimport seaborn as snsimport missingno as msnofrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.pipeline import Pipelinefrom sklearn.linear_model import LogisticRegressionfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.ensemble import GradientBoostingClassifierfrom sklearn.ensemble import RandomForestClassifierfrom sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCVfrom sklearn.model_selection import cross_val_scorefrom sklearn.metrics import confusion_matrix, classification_report, accuracy_scorefrom sklearn import metricsfrom sklearn.metrics import roc_curve, auc, roc_auc_score
IndustrialSteam_train=pd.read_csv(r'data/data178496/zhengqi_train.txt',sep='\t') IndustrialSteam_test=pd.read_csv(r'data/data178496/zhengqi_test.txt',sep='\t')
IndustrialSteam_train.head()
V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... \
0 0.566 0.016 -0.143 0.407 0.452 -0.901 -1.812 -2.360 -0.436 -2.114 ...
1 0.968 0.437 0.066 0.566 0.194 -0.893 -1.566 -2.360 0.332 -2.114 ...
2 1.013 0.568 0.235 0.370 0.112 -0.797 -1.367 -2.360 0.396 -2.114 ...
3 0.733 0.368 0.283 0.165 0.599 -0.679 -1.200 -2.086 0.403 -2.114 ...
4 0.684 0.638 0.260 0.209 0.337 -0.454 -1.073 -2.086 0.314 -2.114 ...
V29 V30 V31 V32 V33 V34 V35 V36 V37 target
0 0.136 0.109 -0.615 0.327 -4.627 -4.789 -5.101 -2.608 -3.508 0.175
1 -0.128 0.124 0.032 0.600 -0.843 0.160 0.364 -0.335 -0.730 0.676
2 -0.009 0.361 0.277 -0.116 -0.843 0.160 0.364 0.765 -0.589 0.633
3 0.015 0.417 0.279 0.603 -0.843 -0.065 0.364 0.333 -0.112 0.206
4 0.183 1.078 0.328 0.418 -0.843 -0.215 0.364 -0.280 -0.028 0.384
[5 rows x 39 columns]IndustrialSteam_train.info()
missing_values = msno.bar(IndustrialSteam_train, figsize = (16,5),color = "#483D8B")
<Figure size 1600x500 with 3 Axes>
IndustrialSteam_train.describe().T
count mean std min 25% 50% 75% max V0 2888.0 0.123048 0.928031 -4.335 -0.29700 0.3590 0.72600 2.121 V1 2888.0 0.056068 0.941515 -5.122 -0.22625 0.2725 0.59900 1.918 V2 2888.0 0.289720 0.911236 -3.420 -0.31300 0.3860 0.91825 2.828 V3 2888.0 -0.067790 0.970298 -3.956 -0.65225 -0.0445 0.62400 2.457 V4 2888.0 0.012921 0.888377 -4.742 -0.38500 0.1100 0.55025 2.689 V5 2888.0 -0.558565 0.517957 -2.182 -0.85300 -0.4660 -0.15400 0.489 V6 2888.0 0.182892 0.918054 -4.576 -0.31000 0.3880 0.83125 1.895 V7 2888.0 0.116155 0.955116 -5.048 -0.29500 0.3440 0.78225 1.918 V8 2888.0 0.177856 0.895444 -4.692 -0.15900 0.3620 0.72600 2.245 V9 2888.0 -0.169452 0.953813 -12.891 -0.39000 0.0420 0.04200 1.335 V10 2888.0 0.034319 0.968272 -2.584 -0.42050 0.1570 0.61925 4.830 V11 2888.0 -0.364465 0.858504 -3.160 -0.80325 -0.1120 0.24700 1.455 V12 2888.0 0.023177 0.894092 -5.165 -0.41900 0.1230 0.61600 2.657 V13 2888.0 0.195738 0.922757 -3.675 -0.39800 0.2895 0.86425 2.475 V14 2888.0 0.016081 1.015585 -2.455 -0.66800 -0.1610 0.82975 2.558 V15 2888.0 0.096146 1.033048 -2.903 -0.66225 -0.0005 0.73000 4.314 V16 2888.0 0.113505 0.983128 -5.981 -0.30000 0.3060 0.77425 2.861 V17 2888.0 -0.043458 0.655857 -2.224 -0.36600 0.1650 0.43000 2.023 V18 2888.0 0.055034 0.953466 -3.582 -0.36750 0.0820 0.51325 4.441 V19 2888.0 -0.114884 1.108859 -3.704 -0.98750 -0.0005 0.73725 3.431 V20 2888.0 -0.186226 0.788511 -3.402 -0.67550 -0.1565 0.30400 3.525 V21 2888.0 -0.056556 0.781471 -2.643 -0.51700 -0.0565 0.43150 2.259 V22 2888.0 0.302893 0.639186 -1.375 -0.06300 0.2165 0.87200 2.018 V23 2888.0 0.155978 0.978757 -5.542 0.09725 0.3380 0.36825 1.906 V24 2888.0 -0.021813 1.033403 -1.344 -1.19100 0.0950 0.93125 2.423 V25 2888.0 -0.051679 0.915957 -3.808 -0.55725 -0.0760 0.35600 7.284 V26 2888.0 0.072092 0.889771 -5.131 -0.45200 0.0750 0.64425 2.980 V27 2888.0 0.272407 0.270374 -1.164 0.15775 0.3250 0.44200 0.925 V28 2888.0 0.137712 0.929899 -2.435 -0.45500 -0.4470 0.73000 4.671 V29 2888.0 0.097648 1.061200 -2.912 -0.66400 -0.0230 0.74525 4.580 V30 2888.0 0.055477 0.901934 -4.507 -0.28300 0.0535 0.48800 2.689 V31 2888.0 0.127791 0.873028 -5.859 -0.17025 0.2995 0.63500 2.013 V32 2888.0 0.020806 0.902584 -4.053 -0.40725 0.0390 0.55700 2.395 V33 2888.0 0.007801 1.006995 -4.627 -0.49900 -0.0400 0.46200 5.465 V34 2888.0 0.006715 1.003291 -4.789 -0.29000 0.1600 0.27300 5.110 V35 2888.0 0.197764 0.985675 -5.695 -0.20250 0.3640 0.60200 2.324 V36 2888.0 0.030658 0.970812 -2.608 -0.41300 0.1370 0.64425 5.238 V37 2888.0 -0.130330 1.017196 -3.630 -0.79825 -0.1855 0.49525 3.000 target 2888.0 0.126353 0.983966 -3.044 -0.35025 0.3130 0.79325 2.538
hist_plot = IndustrialSteam_train.hist(figsize = (20,20), color = "#483D8B")
<Figure size 2000x2000 with 42 Axes>
from pylab import mplfrom matplotlib.font_manager import FontProperties myfont=FontProperties(fname=r'/usr/share/fonts/fangzheng/FZSYJW.TTF',size=12) sns.set(font=myfont.get_name()) corr = IndustrialSteam_train.corr()# 调用热力图绘制相关性关系plt.figure(figsize=(25,25),dpi=150) sns.heatmap(corr, square=True, linewidths=0.1, annot=True)
<matplotlib.axes._subplots.AxesSubplot at 0x7fe003667410>
<Figure size 3750x3750 with 2 Axes>
以0.5为界限,同时在训练集和测试集中去除相关系数绝对值低于0.5的特征,确保被输入模型进行训练的特征与预测目标值有较强的相关性。
df_train = IndustrialSteam_train[['V0','V1','V3','V4','V8','V12','V16','V31','target']] df_test = IndustrialSteam_test[['V0','V1','V3','V4','V8','V12','V16','V31']]
plt.figure(figsize=(20,10)) sns.boxenplot(data = df_train) plt.xticks(rotation=60) plt.show()
<Figure size 2000x1000 with 1 Axes>
#median imputationimport pandas as pdimport numpy as np
train = df_train
sns.boxplot(train['V0'])
plt.title("Box Plot before median imputation")
plt.show()
q1 = train['V0'].quantile(0.25)
q3 = train['V0'].quantile(0.75)
iqr = q3-q1
Lower_tail = q1 - 1.5 * iqr
Upper_tail = q3 + 1.5 * iqr# V0med = np.median(train['V0'])for i in train['V0']: if i > Upper_tail or i < Lower_tail:
train['V0'] = train['V0'].replace(i, med)
sns.boxplot(train['V0'])
plt.title("Box Plot after median imputation")
plt.show()
# V1med = np.median(train['V1'])for i in train['V1']: if i > Upper_tail or i < Lower_tail:
train['V1'] = train['V1'].replace(i, med)# V3med = np.median(train['V3'])for i in train['V3']: if i > Upper_tail or i < Lower_tail:
train['V3'] = train['V3'].replace(i, med)# V4med = np.median(train['V4'])for i in train['V4']: if i > Upper_tail or i < Lower_tail:
train['V4'] = train['V4'].replace(i, med)# V8med = np.median(train['V8'])for i in train['V8']: if i > Upper_tail or i < Lower_tail:
train['V8'] = train['V8'].replace(i, med)# V12med = np.median(train['V12'])for i in train['V12']: if i > Upper_tail or i < Lower_tail:
train['V12'] = train['V12'].replace(i, med)# V16med = np.median(train['V16'])for i in train['V16']: if i > Upper_tail or i < Lower_tail:
train['V16'] = train['V16'].replace(i, med)# V31med = np.median(train['V31'])for i in train['V31']: if i > Upper_tail or i < Lower_tail:
train['V31'] = train['V31'].replace(i, med)<Figure size 640x480 with 1 Axes>
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:18: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
<Figure size 640x480 with 1 Axes>
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:27: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:33: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:39: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:45: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:51: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:57: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/ipykernel_launcher.py:63: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
查看异常值插补后的数据分布
plt.figure(figsize=(20,10)) sns.boxenplot(data = df_train) plt.xticks(rotation=60) plt.show()
<Figure size 2000x1000 with 1 Axes>
data_features = df_train.loc[df_train.index[:], ['V0','V1','V3','V4','V8','V12','V16','V31']] data_label = df_train['target']
from sklearn.model_selection import train_test_split# 数据集划分x_train, x_test, y_train, y_test = train_test_split(data_features, data_label, test_size=0.2, random_state=6)print("训练集的特征值:\n", x_train.shape)print("测试集的标签值:\n", y_test.shape)print("The length of original data X is:", data_features.shape[0])print("The length of train Data is:", x_train.shape[0])print("The length of test Data is:", x_test.shape[0])训练集的特征值: (2310, 8) 测试集的标签值: (578,) The length of original data X is: 2888 The length of train Data is: 2310 The length of test Data is: 578
x_train=x_train.reset_index(drop=True) x_test=x_test.reset_index(drop=True) y_train=y_train.reset_index(drop=True) y_test=y_test.reset_index(drop=True)
对重置完成的各个数据集,将数据转换成矩阵形式供后续使用。
x_train=np.array(x_train) x_test=np.array(x_test) y_train=np.array(y_train) y_test=np.array(y_test)
y_train
array([-0.987, 1.142, -2.555, ..., -0.42 , 1.024, 1.046])
y_train = np.array(y_train) y_train = y_train.reshape(-1,1) y_test = np.array(y_test) y_test = y_test.reshape(-1,1)
from sklearn.preprocessing import MinMaxScalerfrom sklearn.preprocessing import StandardScaler# 1. 实例化一个转换器类transfer = StandardScaler()# 2. 标准化x_train = transfer.fit_transform(x_train) x_test = transfer.fit_transform(x_test) y_train = transfer.fit_transform(y_train) y_test = transfer.fit_transform(y_test)# df_test_x = transfer.fit_transform(df_test)
x_train[0]
array([-0.187, -0.33 , -1.523, 0.6 , -0.437, 0.389, -0.626, -0.057])
import randomimport paddle
seed = 666# 设置随机种子 固定结果def set_seed(seed):
np.random.seed(seed)
random.seed(seed)
paddle.seed(seed)
set_seed(seed)搭建全连接神经网络
import paddleimport paddle.nn as nn# 定义动态图class Classification(paddle.nn.Layer):
def __init__(self):
super(Classification, self).__init__()
self.fc1 = paddle.nn.Linear(8, 1)
# 网络的前向计算函数
def forward(self, inputs):
pred = self.fc1(inputs) return predtrain_nums = []
train_costs = []def draw_train_process(iters,train_costs):
title="training cost"
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("cost", fontsize=14)
plt.plot(iters, train_costs,color='red',label='training cost')
plt.grid()
plt.show()import paddleimport paddle.nn.functional as Fclass kl_loss(paddle.nn.Layer):
def __init__(self):
super(kl_loss, self).__init__() def forward(self, p, q, label):
ce_loss = 0.5 * (F.mse_loss(p, label=label)) + F.mse_loss(q, label=label)
kl_loss = self.compute_kl_loss(p, q) # carefully choose hyper-parameters
loss = ce_loss + 0.3 * kl_loss
return loss def compute_kl_loss(self, p, q):
p_loss = F.kl_div(F.log_softmax(p, axis=-1), F.softmax(q, axis=-1), reduction='none')
q_loss = F.kl_div(F.log_softmax(q, axis=-1), F.softmax(p, axis=-1), reduction='none') # You can choose whether to use function "sum" and "mean" depending on your task
p_loss = p_loss.sum()
q_loss = q_loss.sum()
loss = (p_loss + q_loss) / 2
return loss超参数设定如下:
import paddle.nn.functional as Fimport paddle
y_preds = []
labels_list = []
BATCH_SIZE = 16train_data = x_train
train_data_y = y_train
test_data = x_test
test_data_y = y_test
compute_kl_loss = kl_loss()
CET_loss = paddle.nn.CrossEntropyLoss()def train(model):
print('start training ... ') # 开启模型训练模式
model.train()
EPOCH_NUM = 20
train_num = 0
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=0.0002, T_max=int(train_data.shape[0]/BATCH_SIZE*EPOCH_NUM), verbose=False)
optimizer = paddle.optimizer.Adam(learning_rate=scheduler, parameters=model.parameters()) for epoch_id in range(EPOCH_NUM): # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
np.random.shuffle(train_data) # 将训练数据进行拆分,每个batch包含8条数据
mini_batches = [np.append(train_data[k: k+BATCH_SIZE], train_data_y[k: k+BATCH_SIZE], axis = 1) for k in range(0, len(train_data), BATCH_SIZE)] for batch_id, data in enumerate(mini_batches):
features_np = np.array(data[:, :8], np.float32)
labels_np = np.array(data[:, -1:], np.float32)
features = paddle.to_tensor(features_np)
labels = paddle.to_tensor(labels_np) #前向计算
#y_pred = model(features)
y_pred1 = model(features)
y_pred2 = model(features)
cost = compute_kl_loss(y_pred1, y_pred2, label=labels) # cost = CET_loss(y_pred, labels)
#cost = F.mse_loss(y_pred, label=labels)
train_cost = cost.numpy()[0] #反向传播
cost.backward() #最小化loss,更新参数
optimizer.step() # 清除梯度
optimizer.clear_grad() if batch_id % 500 == 0 and epoch_id % 1 == 0: print("Pass:%d,Cost:%0.5f"%(epoch_id, train_cost))
train_num = train_num + BATCH_SIZE
train_nums.append(train_num)
train_costs.append(train_cost)
model = Classification()
train(model)start training ... Pass:0,Cost:2.43391 Pass:1,Cost:3.92359 Pass:2,Cost:2.98257 Pass:3,Cost:2.93184 Pass:4,Cost:2.18770 Pass:5,Cost:3.19956 Pass:6,Cost:4.07202 Pass:7,Cost:2.55369 Pass:8,Cost:3.19636 Pass:9,Cost:3.43391 Pass:10,Cost:2.27505 Pass:11,Cost:1.95374 Pass:12,Cost:2.40070 Pass:13,Cost:3.80006 Pass:14,Cost:2.00660 Pass:15,Cost:3.59392 Pass:16,Cost:2.63512 Pass:17,Cost:2.65104 Pass:18,Cost:2.91626 Pass:19,Cost:2.96661
import matplotlibimport matplotlib.pyplot as pltimport warnings
warnings.filterwarnings('ignore')
%matplotlib inline
draw_train_process(train_nums, train_costs)<Figure size 640x480 with 1 Axes>
train_data = x_train
train_data_y = y_train
test_data = x_test
test_data_y = y_testdef predict(model):
print('start evaluating ... ')
model.eval()
outputs = []
mini_batches = [np.append(test_data[k: k+BATCH_SIZE], test_data_y[k: k+BATCH_SIZE], axis = 1) for k in range(0, len(test_data), BATCH_SIZE)] for data in mini_batches:
features_np = np.array(data[:, :8], np.float32)
features = paddle.to_tensor(features_np)
pred = model(features)
out = paddle.argmax(pred, axis=1)
outputs.extend(out.numpy()) return outputs
outputs = predict(model)start evaluating ...
predict_result = []for infer_feature in test_data:
infer_feature = infer_feature.reshape(1, 8)
infer_feature = paddle.to_tensor(np.array(infer_feature, dtype='float32'))
result = model(infer_feature)
predict_result.append(result)print(predict_result)[Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06025434]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.26668236]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.04699296]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15396497]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11334734]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.22626641]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02553241]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00950530]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.56165761]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33237797]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16205853]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.44974920]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11122769]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.78721941]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.29552042]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.05363976]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34395823]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02476013]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24630979]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.41399071]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09647968]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25168726]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12463144]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.17930359]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.22265507]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.19350600]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16149586]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.97867000]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14237657]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.19865277]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06837564]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.33876964]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.08810827]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-1.31689727]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25119871]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.33098105]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.15266529]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.05445822]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00509700]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.18745518]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07550180]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.26571921]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34217680]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.08926390]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.30792972]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16032460]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.57145494]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.54297256]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25611365]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.63418227]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00557299]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.18981141]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12302241]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03510806]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.04525859]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00092174]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13034135]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.18077031]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16647439]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.68720388]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.44611922]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04261202]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09249763]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.58799160]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.79527473]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.96323133]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.35711923]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.18494114]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.07933167]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.13546264]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02684295]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.75451505]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11692813]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14113143]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33698213]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38676432]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.03340812]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.22545892]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.21347922]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14782789]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00954092]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.06012034]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22003201]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.70404851]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.02809775]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.16613525]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06436903]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.05216470]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.50551772]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.35137683]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.15199861]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.27733982]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.05591117]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.43492565]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09615488]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.32641587]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.04105541]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16224015]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-1.01362646]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.23819336]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.46461323]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.37720412]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03798632]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.65613806]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.23755836]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.69738317]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25705069]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-1.40520060]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.21922657]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.02883075]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.48285359]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.23328757]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-1.09615302]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.21412531]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.00535169]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.79399991]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.52258801]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.29668379]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.30907032]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.55264854]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.66549766]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.56879592]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.47440132]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02180216]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09484225]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03586899]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.47702056]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11216781]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.10515133]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.60479486]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.32108724]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07980973]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04501529]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38887209]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.26931447]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.10054627]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22147605]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06280908]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.01246339]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14042327]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.38733354]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03984775]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.40873846]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.37586206]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20004481]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.50934064]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.18784773]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.14203307]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07040142]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.54865539]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.55391824]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38516435]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02930367]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02538344]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.39730838]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.01709569]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.03152084]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12164506]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.26876831]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.67705190]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.13091573]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.02252182]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.28376839]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.23220628]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.19528371]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.00430268]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.85965836]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.09281531]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.71069968]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.17499715]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.19014531]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.73743546]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.19340679]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.31273481]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09856954]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03048946]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24947995]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11751899]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.24697509]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.17461219]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.41916654]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.37340474]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25891006]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.37807691]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.02975428]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.10468236]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.53602326]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.55852354]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.21298340]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09785891]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.21151096]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04951549]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.80943894]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04852328]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.15818748]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34501284]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.21866712]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.17124262]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12341249]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34145629]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.23096427]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11948290]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.44626537]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13348910]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33801559]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15752676]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.57183367]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12696415]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.73151672]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.04441139]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33734927]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12257078]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.42197654]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07283434]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12016518]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22773159]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.00632009]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.58992362]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33788848]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22251603]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.36759052]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.01202503]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.19001615]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16210946]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07992619]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00859043]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.93312132]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34916848]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.43634501]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.67739213]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02566296]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25677067]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20933753]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06095613]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.49417597]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04814164]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.47177973]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.34180573]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.21158339]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06199323]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.17558643]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15741932]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.19417530]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.46489933]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.53986490]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.52108425]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.32266229]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.23374096]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16298553]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22927698]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16080782]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20695420]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.59630513]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.07300067]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.79350090]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.41532162]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.26769426]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.36136031]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.45680836]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38632005]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13972732]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.34614977]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13971359]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16951732]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.03548551]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04101467]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.09060603]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11193165]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11157656]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16849741]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24559656]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.24626759]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.14612700]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.40763599]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.54426730]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12621829]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.97957349]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.00884005]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.28282693]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.44169435]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.40584773]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16409793]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.55420506]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.30608740]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.49449006]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.02781016]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.04644860]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.79522288]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11904773]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.47921237]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.21942130]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.25088710]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.31529802]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11372295]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15712427]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.58457565]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.40284061]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34274596]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.78810346]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22440287]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.52228999]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38588661]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15205957]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.09741980]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.13445786]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20310366]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.05031108]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.46788487]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24416491]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.52382004]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06532061]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.53144491]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33535960]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.73592830]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.33153993]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06309694]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.20155904]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.44570580]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.08384399]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.35838705]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.46934620]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.49268493]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04641798]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15203755]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.42403418]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.60045838]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24354461]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07905102]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.54188943]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.09376356]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07086556]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12033543]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00973678]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.26597875]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.10573357]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.52661669]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11851332]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.85310972]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.96144092]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.80334806]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11293778]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12638660]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.65866530]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.88422561]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14159554]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.32514289]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.28985247]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.21863467]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.16769901]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.28093368]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24580508]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.33940685]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.07320566]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.19715047]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.44033682]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.13477851]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.37601706]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.61441523]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38144094]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.55627668]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00794823]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14110795]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.04848848]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.36352396]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.27837858]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.07947430]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.10192870]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.24401200]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.83408523]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.44856891]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06447601]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.17212763]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.18707243]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11827999]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.37973288]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.56238842]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.46713963]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.47919673]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07199048]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.47425637]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12414902]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13834774]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.31951672]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.27122203]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06265430]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.51172924]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.50536525]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.51465583]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.44701704]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.39858559]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.31886303]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.29493463]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00735997]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.42210022]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06257382]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.76618671]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.59000134]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.81734991]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.48811778]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.50484604]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.17658579]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15134256]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.22699168]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11169553]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.96924913]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.01308975]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.80368865]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.40497336]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.16192749]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14131603]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.22107267]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.39507094]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.03073066]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.27309778]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.00708114]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.57821071]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33658504]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11668704]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.66753232]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.97967565]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.16306505]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.05496188]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.51948881]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.67708051]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.05163373]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00239483]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.14013566]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34191847]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25270984]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11080459]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.48523274]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.19357768]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.17594978]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07142785]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20822111]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.08473505]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.15897757]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.13883314]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.34538117]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.07930353]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.35454777]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.58794606]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.33299047]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.25655201]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.10445303]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04779747]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.10455710]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16646618]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.31524831]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04964443]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.58060354]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.02770084]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.83897114]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02168062]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.35580465]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.39009991]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13909817]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.08075938]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.18590415]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.56150711]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.18525685]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.01324606]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07201144]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.28585029]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.90698087]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20296726]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.39485294]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.48382780]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.18443805]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.38270891]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.79779136]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.19123754]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[1.21670949]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.01447338]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.12670536]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.01824123]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.14000210]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16719995]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.18032512]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.18801895]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20721790]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.75916696]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.21391419]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.22957066]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.35765213]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.57816088]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.53739858]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.08023025]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.23322487]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.27490732]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11255787]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.90063202]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.21748936]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.46920335]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-1.03563023]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.07641967]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.28591272]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.60917199]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.27543157]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.30377823]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.01602978]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.36365208]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.63090140]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06347218]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.05933932]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.70915890]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.72446680]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.96640921]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.29156765]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.35821834]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.42687842]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.43299255]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.41873679]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.24981216]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.69104838]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04902317]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.06218195]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.31550786]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.45310614]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.17188393]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12393215]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.57967651]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.20886803]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.14294177]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.49980709]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.28482857]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.00266491]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.56916320]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.31185475]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.71436346]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.66652203]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.32023388]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.45304009]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.32588464]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16148154]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.42767087]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.60954678]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.85734975]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.55337751]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.25894463]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.32260633]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03098416]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.13747558]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.09666431]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.45293269]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.19382098]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.40163389]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.42662674]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.05361977]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.38799116]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.02736823]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.02932636]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.10339427]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.46115249]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.36047184]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.33328989]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11792254]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.06596407]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.10048011]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.21324658]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.11020529]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.08897623]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.17561601]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.11536156]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.93352878]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.35112262]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.22222342]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.04151958]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.39091966]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.44056484]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.50789940]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-1.01449597]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.64409053]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.03456168]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.40700445]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.16290851]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[-0.12790632]]), Tensor(shape=[1, 1], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.41777393]])]predict_result = np.array(predict_result) predict_result_new = predict_result.reshape(-1,1) test_data_y_new = test_data_y
# 绘制预测与真值结果plt.figure(figsize=(12,5), dpi=80)
plt.plot(test_data_y_new[:100], label="True value")
plt.plot(predict_result_new[:100], label="Pred value")
plt.xlabel("Sample",fontproperties = 'Times New Roman', size = 18)
plt.ylabel("Value",fontproperties = 'Times New Roman', size = 18)
plt.legend(loc='best')
plt.yticks(fontproperties = 'Times New Roman', size = 18)
plt.xticks(fontproperties = 'Times New Roman', size = 18)
plt.title("True VS Pred",fontproperties = 'Times New Roman', size = 18)
plt.legend(loc="best")
plt.show()<Figure size 960x400 with 1 Axes>
以上就是工业蒸汽量预测的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号