本文介绍基于PaddleHub的反向卷腹AI计数器。因健身时手动计数易出错,利用human_pose_estimation_resnet50_mpii模型实现计数。通过检测人体关键点,以膝盖x轴坐标变化为依据,判断反向卷腹完成情况。还给出环境准备、检测示例及计数代码,测试显示能准确计数,生成带检测效果的视频。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

练腹只做仰卧起坐?做太多可能伤你的背!试试反向卷腹吧!更安全
自从刘耕宏大哥的直播健身流行,引起了全民健身的热潮~
一边运动的时候一边还要数着自己做到第几个才能达标,但是偶尔会数错
为了针对做的时候不要再操心计数的问题,利用PaddleHub的做了个反向卷腹AI计数器。
AI帮你反向卷腹计数
!pip install -U pip --user >log.log !pip install -U paddlehub >log.log
!pip list |grep paddle
!hub install human_pose_estimation_resnet50_mpii >log.log
!hub list|grep human
针对下面这三张图片做关键点检测,具体如下:
import cv2import paddlehub as hub
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")#human_pose_estimation_resnet50_mpiiimage1=cv2.imread('work/ready.png') # 准备状态image2=cv2.imread('work/doing.png') # 中间状态image3=cv2.imread('work/finish.png') #结束状态results = pose_estimation.keypoint_detection(images=[image1,image2,image3], visualization=True)判断一次反向卷腹的依据是什么呢?
尽管上面的三张图有些点标定的不是很准确,但是我们可以比较明确的看到值得关注的点,例如膝盖的标定点。用膝盖点的移动可以作为评判标准。
# 打印三张左右膝盖的关键点 print(results[0]['data']['right_knee'])print(results[1]['data']['right_knee'])print(results[2]['data']['right_knee'])print(results[0]['data']['left_knee'])print(results[1]['data']['left_knee'])print(results[2]['data']['left_knee'])#从结果来看,我们用左膝盖或者右膝盖的点都可
[783, 187] [498, 250] [784, 187] [820, 242] [498, 245] [809, 183]
import cv2import paddlehub as hubimport mathfrom matplotlib import pyplot as pltimport numpy as npimport os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'%matplotlib inlinedef countYwqz():
pose_estimation = hub.Module(name="human_pose_estimation_resnet50_mpii")
flag = False
count = 0
num = 0
all_num = []
flip_list = []
fps = 60
# 可选择web视频流或者文件
file_name = 'work/fan_juanfu.mp4'
cap = cv2.VideoCapture(file_name)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # out后期可以合成视频返回
out = cv2.VideoWriter( 'output.mp4',
fourcc,
fps,
(width,height)) while cap.isOpened():
success, image = cap.read() # print(image)
if not success: break
image_height, image_width, _ = image.shape # print(image_height, image_width)
image.flags.writeable = False
results = pose_estimation.keypoint_detection(images=[image], visualization=True, use_gpu=True)
flip = results[0]['data']['right_knee'][0] # 获取膝盖的x轴坐标值
flip_list.append(flip)
all_num.append(num)
num +=1
# 写入视频
img_root="output_pose/"
# 排序,不然是乱序的合成出来
im_names=os.listdir(img_root)
im_names.sort(key=lambda x: int(x.replace("ndarray_time=","").split('.')[0])) for im_name in range(len(im_names)):
img = img_root+str(im_names[im_name]) print(img)
frame=cv2.imread(img)
out.write(frame)
out.release() return all_num,flip_listdef get_count(x,y):
count = 0
flag = False
count_list = [0] # 记录极值的x值
for i in range(len(y)-1): if y[i] <= y[i + 1] and flag == False: continue
elif y[i] >= y[i + 1] and flag == True: continue
else: # 防止附近的轻微抖动也被计入数据
if abs(count_list[-1] - y[i]) >200 or abs(count_list[-1] - y[i-1]) >200 or abs(count_list[-1] - y[i-2]) >200 or abs(count_list[-1] - y[i-3]) >200 or abs(count_list[-1] - y[i+1]) >200 or abs(count_list[-1] - y[i+2]) >200 or abs(count_list[-1] - y[i+3]) >200:
count = count + 1
count_list.append(y[i]) print(x[i])
flag = not flag return math.floor(count/2)
if __name__ == "__main__":
x,y = countYwqz()
plt.figure(figsize=(8, 8))
count = get_count(x,y)
plt.title(f"point numbers: {count}")
plt.plot(x, y)
plt.show()
(从图可以看出总共有6个顶峰,对应计数有6个,和原视频总共做了6个反向卷腹对应上了)
在根目录下可以看到:
output.mp4
以上就是【全民动起来】反向卷腹AI计数器的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号