【NLP】常规赛:中文新闻文本标题分类

P粉084495128
发布: 2025-07-23 10:46:01
原创
164人浏览过
该项目针对中文新闻文本标题分类任务,采用embedding+GRU+MLP模型,精度约0.8。先预处理数据,用Jieba分词,构建语料库和词向量映射,依标题长度分布设最大输入长度20。再搭建网络,训练时验证精度超0.9但测试精度较低,存在过拟合,可尝试BERT提升精度,适合新手参考。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【nlp】常规赛:中文新闻文本标题分类 - php中文网

项目导言:

该项目是我在针对 AI studio 常规赛:中文新闻文本标题分类搭建的项目,目前精度在0.8左右。只简单的使用了embedding+GRU+MLP,但是项目是从头开始搭建的,并没有使用一些复杂的模型,并且项目带有很多解释说明,所以可供新手朋友参考。

(复杂的模型比如BERT,如果想提高精度,可以尝试使用该模型,模型的具体细节可以参考《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》)

项目思路

在看到这个项目之后,首先明确这是个分类任务,类似于手写数字识别这种,因此我们可以参照手写数字识别的思路处理该问题。

首先,对数据集进行预处理(包括去换行符,将标题与类别分离,创建项目语料库等等),然后将我们的输入进行向量化。在向量化过程中,我们使用了Python一个很正要的库:Jieba库。 它是优秀的中文分词第三方库,可以参考Jieba使用说明。然后使用Paddle框的数据集构建方法进行构建我们网络的输入。

然后,我们构建网络模型。对于手写数字识别网络,我们仅仅使用几层简单的全连接网络构建一个MLP多层感知机就可以获得比较好的结果,我们首先进行了这种尝试,结果不是很理想。然后鉴于这个是文本处理任务,我们使用了一个简单的循环神经网络(GRU,门控循环单元)和嵌入层来进行实验,在训练的时候取得不错的结果(val 精度超过0.9),但是在提交之后效果并不是很好(test精度在0.8左右),说明我们的模型存在过拟合,还可以进一步优化。【NLP】常规赛:中文新闻文本标题分类 - php中文网        

1.导入工具

In [1]
import paddleimport numpy as npimport jiebaimport matplotlib.pyplot as pltfrom tqdm import tqdm
登录后复制
       
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/__init__.py:107: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import MutableMapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/rcsetup.py:20: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Iterable, Mapping
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/colors.py:53: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  from collections import Sized
登录后复制
       

2.定义文件路径

In [2]
train_data_path="data/data118554/train.txt"val_data_path='data/data118554/dev.txt'test_data_path='data/data118554/test.txt'
登录后复制
   

3. 读取文件

In [3]
def openfile(path):
    with open(path,'r',encoding='utf-8') as source:
        lines=source.readlines()    return lines
登录后复制
   
In [4]
train_lines=openfile(train_data_path)
val_lines=openfile(val_data_path)
test_lines=openfile(test_data_path)
登录后复制
   

3.1 打印数据集,查看数据集内容及数目

每条数据集是由 “新闻标题文本+类别(标签)”构成,中间由空格隔开。

In [5]
print(len(train_lines))print(train_lines[0])print(len(val_lines))print(val_lines[0])print(len(test_lines))print(test_lines[0])
登录后复制
       
752471
网易第三季度业绩低于分析师预期	科技

80000
网民市民集体幻想中奖后如果你中了9000万怎么办	cai票

83599
北京君太百货璀璨秋色 满100省353020元
登录后复制
       

4. 数据预处理,包括去换行、分割、jieba分词

In [6]
def data_process(datalines,test=False):
    datalist=[]
    labellist=[]    for datas in datalines:        #data,label=datas.strip().split()
        data=datas.strip().split()        #print(data)
        if test==False:
            labellist.append(data[-1])            if len(data[:-1])>1:                for i in range(1,len(data[:-1])):
                    data[0]+=","+data[i]        else:            if len(data)>1:                for i in range(1,len(data)):
                    data[0]+=","+data[i]

        
        datalist.append(data[0])        
    return datalist,labellist
登录后复制
   
In [7]
train_data,train_label=data_process(train_lines)
val_data,val_label=data_process(val_lines)
test_data,_=data_process(test_lines,test=True)
登录后复制
   

4.1 打印经过简单处理(删除换行符,将标题和类别分开)

In [8]
for i in range(5):    print(train_data[i],'   ',train_label[i])print("***********")for i in range(5):    print(val_data[i],'   ',val_label[i])    
print("***********")for i in range(5):    print(test_data[i])
登录后复制
       
网易第三季度业绩低于分析师预期     科技
巴萨1年前地狱重现这次却是天堂,再赴魔鬼客场必翻盘     体育
美国称支持向朝鲜提供紧急人道主义援助     时政
增资交银康联,交行夺参股险商首单     股票
午盘:原材料板块领涨大盘     股票
***********
网民市民集体幻想中奖后如果你中了9000万怎么办     cai票
PVC期货有望5月挂牌     财经
午时三刻新作《幻神录―宿命情缘》     游戏
欧司朗LLFY网络提供一站式照明解决方案     家居
试探北京楼市向何方:排不完的队,涨不够的价     房产
***********
北京君太百货璀璨秋色,满100省353020元
教育部:小学高年级将开始学习性知识
专业级单反相机,佳能7D单机售价9280元
星展银行起诉内地客户,银行强硬客户无奈
脱离中国的实际,强压RMB大幅升值只能是梦想
登录后复制
       

4.2 Jieba库的使用

In [9]
def jieba_process(datalist):
    data=[]    for datas in tqdm(datalist):
        data.append(jieba.lcut(datas))    
    return data
登录后复制
   
In [10]
train_data=jieba_process(train_data)
val_data=jieba_process(val_data)
test_data=jieba_process(test_data)
登录后复制
       
  0%|          | 0/752471 [00:00<?, ?it/s]Building prefix dict from the default dictionary ...
Loading model from cache /tmp/jieba.cache
Loading model cost 0.710 seconds.
Prefix dict has been built successfully.
100%|██████████| 752471/752471 [01:16<00:00, 9817.26it/s] 
100%|██████████| 80000/80000 [00:08<00:00, 9751.10it/s] 
100%|██████████| 83599/83599 [00:07<00:00, 11178.25it/s]
登录后复制
       

4.3 查看分词结果

In [11]
print(train_data[0],train_label[0])print(val_data[0],val_label[0])print(test_data[0])
登录后复制
       
['网易', '第三季度', '业绩', '低于', '分析师', '预期'] 科技
['网民', '市民', '集体', '幻想', '中奖', '后', '如果', '你', '中', '了', '9000', '万', '怎么办'] cai票
['北京', '君太', '百货', '璀璨', '秋色', ',', '满', '100', '省', '353020', '元']
登录后复制
       

5.从训练集中提取标签种类,并进行类别编码

In [12]
label_set=set()for label in tqdm(train_label):
    label_set.add(label)
登录后复制
       
100%|██████████| 752471/752471 [00:00<00:00, 2498469.87it/s]
登录后复制
       
In [13]
print(label_set)
登录后复制
       
{'财经', '科技', '时政', '房产', '社会', '游戏', '家居', '时尚', '股票', 'cai票', '娱乐', '教育', '星座', '体育'}
登录后复制
       
In [14]
label_dict=dict()
dict_label=dict()for label in label_set:
    label_dict[label]=len(label_dict)
    dict_label[len(label_dict)-1]=label
登录后复制
   
In [15]
print(label_dict)print(dict_label)
登录后复制
       
{'财经': 0, '科技': 1, '时政': 2, '房产': 3, '社会': 4, '游戏': 5, '家居': 6, '时尚': 7, '股票': 8, 'cai票': 9, '娱乐': 10, '教育': 11, '星座': 12, '体育': 13}
{0: '财经', 1: '科技', 2: '时政', 3: '房产', 4: '社会', 5: '游戏', 6: '家居', 7: '时尚', 8: '股票', 9: 'cai票', 10: '娱乐', 11: '教育', 12: '星座', 13: '体育'}
登录后复制
       

6.统计标题的长度分布

目的是确定我们网络的输入长度,由统计结果可以看出,绝大部分的标题分词后长度都在20以内,因此我们可以将网络是最大输入长度设为20.(亦可以设为实际的最大长度,虽然这样考虑到了所有的输入,但是没必要,因为很多输入会过于稀疏)

AI新媒体文章
AI新媒体文章

专为新媒体人打造的AI写作工具,提供“选题创作”、“文章重写”、“爆款标题”等功能

AI新媒体文章 75
查看详情 AI新媒体文章
In [16]
alllen_dict=dict()for data in train_data:
    length=len(data)    if length not in alllen_dict:
        alllen_dict[length]=0
    alllen_dict[length]+=1
登录后复制
   
In [17]
alllen_dict = sorted(alllen_dict.items(), key = lambda x:x[0], reverse = False)print(alllen_dict)
登录后复制
       
[(1, 25), (2, 225), (3, 941), (4, 4629), (5, 17045), (6, 36478), (7, 58085), (8, 80255), (9, 99215), (10, 106161), (11, 98791), (12, 88984), (13, 71851), (14, 47479), (15, 25321), (16, 10877), (17, 4111), (18, 1401), (19, 408), (20, 139), (21, 38), (22, 11), (24, 1)]
登录后复制
       
In [18]
x=[l[0] for l in alllen_dict]
y=[l[1] for l in alllen_dict]
plt.bar(x, y)  
plt.xlabel('length')
plt.ylabel('nums')
plt.legend(loc='lower right')
plt.show()
登录后复制
       
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2349: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  if isinstance(obj, collections.Iterator):
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/cbook/__init__.py:2366: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  return list(data) if isinstance(data, collections.MappingView) else data
No handles with labels found to put in legend.
登录后复制
       
<Figure size 432x288 with 1 Axes>
登录后复制
               

7. 构建词库,并设定词汇频率阈值

7.1 词库

In [19]
def build_cropus(data):
    crpous=[]    for i in range(len(data)):
        crpous.extend(data[i])    return crpous
登录后复制
   
In [20]
allcrpous=build_cropus(train_data+val_data+test_data)print(len(allcrpous))
登录后复制
       
9404469
登录后复制
       

7.2 构造word--->id 和id--->word的映射关系,同时记录每个词汇出现的频率

In [21]
# 构造词典,统计每个词的频率,并根据频率将每个词转换为一个整数iddef build_dict(corpus,frequency):
    # 首先统计每个不同词的频率(出现的次数),使用一个词典记录
    word_freq_dict = dict()    for word in corpus:        if word not in word_freq_dict:
            word_freq_dict[word] = 0
        word_freq_dict[word] += 1

    # 将这个词典中的词,按照出现次数排序,出现次数越高,排序越靠前
    word_freq_dict = sorted(word_freq_dict.items(), key = lambda x:x[1], reverse = True)    
    # 构造3个不同的词典,分别存储,
    # 每个词到id的映射关系:word2id_dict
    
    # 每个id到词的映射关系:id2word_dict
    word2id_dict = {'<pad>':0,'<unk>':1}
   
    id2word_dict = {0:'<pad>',1:'<unk>'}    # 按照频率,从高到低,开始遍历每个单词,并为这个单词构造一个独一无二的id
    for word, freq in word_freq_dict:        if freq>frequency:
            curr_id = len(word2id_dict)
            word2id_dict[word] = curr_id
            id2word_dict[curr_id] = word        else:
            word2id_dict[word]=1
    return word2id_dict, id2word_dict,word_freq_dict
登录后复制
   
In [22]
word_fre=1word2id_dict,id2word_dict,word_counts=build_dict(allcrpous,word_fre)print(len(word2id_dict))print(len(id2word_dict))
登录后复制
       
267684
149017
登录后复制
       
In [23]
vocab_maxlen=len(word2id_dict)print('有',len(word2id_dict),'个字被映射到',len(id2word_dict),'个id上') # 字:id
登录后复制
       
有 267684 个字被映射到 149017 个id上
登录后复制
       

7.3 根据每个词汇出现的频率统计 每个频率出现的次数;进而限定词汇频率阈值

In [24]
counts_word_dict=dict()for word,counts in word_counts:    if counts not in counts_word_dict:
        counts_word_dict[counts]=0
    counts_word_dict[counts]+=1counts_word_dict = sorted(counts_word_dict.items(), key = lambda x:x[0], reverse = False)#print(counts_word_dict)x=[l[0] for l in counts_word_dict]
y=[l[1] for l in counts_word_dict]

plt.bar(x[:10], y[:10])  
plt.xlabel('frequency')
plt.ylabel('nums')
plt.legend(loc='lower right')
plt.show()
登录后复制
       
No handles with labels found to put in legend.
登录后复制
       
<Figure size 432x288 with 1 Axes>
登录后复制
               

7.4 总共的词汇有26万7千个,而仅出现1次的词汇就占了12万个,我们可以认为仅出现1次的词汇是无关紧要的。 根据这个结果,确定word_freq=1,之后也可进行实验验证其他长度是否更优。

8.根据word2id_dict将标题文本和标签向量化

In [25]
tensor_maxlen=15  # 根据统计到的标题长度分布设定vocab_size=len(id2word_dict)  # 词汇量
登录后复制
   
In [26]
def build_tensor(data,dicta,maxlen):
    tensor=[]    for i in range(len(data)):
        subtensor=[]
        lista=data[i]        for j in range(len(lista)):
            index=dicta.get(lista[j])
            subtensor.append(index)        
        # 长度限定,不足补0 ;超过则截断   
        if len(subtensor) < maxlen:  
            subtensor+=[0]*(maxlen-len(subtensor))        else:
            subtensor=subtensor[:maxlen]

        tensor.append(subtensor)    return tensor
登录后复制
   
In [27]
train_tensor=paddle.to_tensor(np.array(build_tensor(train_data,word2id_dict,tensor_maxlen)))
val_tensor=paddle.to_tensor(np.array(build_tensor(val_data,word2id_dict,tensor_maxlen)))
test_tensor=np.array(build_tensor(test_data,word2id_dict,tensor_maxlen))
登录后复制
   
In [28]
print(train_tensor.shape)print(train_tensor[0])print(type(train_tensor))print(val_tensor.shape)print(val_tensor[0])print(type(val_tensor))print(test_tensor.shape)print(test_tensor[0])print(type(test_tensor))
登录后复制
       
[752471, 15]
登录后复制
       
W1222 21:06:31.478082  1304 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1222 21:06:31.482895  1304 device_context.cc:465] device: 0, cuDNN Version: 7.6.
登录后复制
       
Tensor(shape=[15], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
       [2739, 2054, 216 , 2193, 1240, 121 , 0   , 0   , 0   , 0   , 0   , 0   ,
        0   , 0   , 0   ])
<class 'paddle.Tensor'>
[80000, 15]
Tensor(shape=[15], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
       [1580, 1539, 677 , 3582, 4690, 42  , 6238, 75  , 41  , 69  , 3930, 32  ,
        9496, 0   , 0   ])
<class 'paddle.Tensor'>
(83599, 15)
[   60 59529  4269  9297 69435     2  6721   572  2403     1    16     0
     0     0     0]
<class 'numpy.ndarray'>
登录后复制
       

#将token出现的频率保存到文件中。

with open('./data/word_counts.txt','w',encoding='utf-8') as word: for i in word_counts: word.write(str(i)+'\n')

到这里,data部分的向量化完成,下面进行label的向量化

In [29]
print(train_label[0])print(val_label[0])print(label_dict)def get_label_tensor(dict,label):
    tensor=[]    for d in label:
        tensor.append(dict[d])    return tensor# def test_lable_tensor(lena):#     tensor=[]#     for i in range(lena):#         tensor.append(0)#     return tensor
登录后复制
       
科技
cai票
{'财经': 0, '科技': 1, '时政': 2, '房产': 3, '社会': 4, '游戏': 5, '家居': 6, '时尚': 7, '股票': 8, 'cai票': 9, '娱乐': 10, '教育': 11, '星座': 12, '体育': 13}
登录后复制
       
In [30]
train_label_tensor=np.array(get_label_tensor(label_dict,train_label))
val_label_tensor=np.array(get_label_tensor(label_dict,val_label))# test_lable_tensor=np.array(test_label_tesnor(len(test_tensor)))
登录后复制
   
In [31]
print(train_label_tensor[0])
登录后复制
       
1
登录后复制
       
In [32]
numclass=len(label_set)
train_label_tensor=paddle.to_tensor(train_label_tensor,dtype='int64')
val_label_tensor=paddle.to_tensor(val_label_tensor,dtype='int64')# test_label_tensor=paddle.to_tensor(test_label_tensor,dtype='int64')# train_label_tensor=paddle.nn.functional.one_hot(paddle.to_tensor(train_label_tensor,dtype='int32'),numclass)# val_label_tensor=paddle.nn.functional.one_hot(paddle.to_tensor(val_label_tensor,dtype='int32'),numclass)
登录后复制
   
In [33]
print(type(train_label_tensor))print(train_label_tensor[0])print(train_label_tensor.shape)print(val_label_tensor.shape)# print(test_label_tensor.shape)
登录后复制
       
<class 'paddle.Tensor'>
Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
       [1])
[752471]
[80000]
登录后复制
       

9.搭建网络

9.1创建数据集

In [34]
class MyDataset(paddle.io.Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, title,lable):
        """
        步骤二:实现构造函数,定义数据集大小
        """
        super(MyDataset, self).__init__()
        self.title = title
        self.lable=lable    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        # if self.lable==None:
        #     return self.title[index]
        # else:
        return self.title[index], self.lable[index]    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        return self.title.shape[0]
登录后复制
   
In [35]
BATCH_SIZE=128embed_dim=256hidden_size=128train_batch_num=train_tensor.shape[0]//BATCH_SIZE #3482val_batch_num=val_tensor.shape[0]//BATCH_SIZE #156print(train_batch_num)print(val_batch_num)
登录后复制
       
5878
625
登录后复制
       
In [36]
# 定义数据集train_dataset = MyDataset(train_tensor,train_label_tensor)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True,drop_last=True)

val_dataset=MyDataset(val_tensor,val_label_tensor)
val_loader=paddle.io.DataLoader(val_dataset,batch_size=BATCH_SIZE,shuffle=True,drop_last=True)# test_dataset=MyDataset(test_tensor,train_label_tensor)# test_loader=paddle.io.DataLoader(val_dataset,batch_size=BATCH_SIZE)
登录后复制
   

j=0 for i in train_loader: print(len(i)) for ind,each in enumerate(i): #print(ind,each.shape,each) print(ind,each) j+=1 if j==2: break

9.2 使用Embedding+GRU+MLP进行分类

GRU的内部结构如下,但是我们在使用的时候只需要一行代码即可。

【NLP】常规赛:中文新闻文本标题分类 - php中文网        

In [37]
class Mynet(paddle.nn.Layer):
    def __init__(self,vocab_size,embed_dim,hidden_size,data_maxlen,numclass):
        super(Mynet,self).__init__()
        self.numclass=numclass
        self.data_maxlen=data_maxlen
        self.vocab_size=vocab_size
        self.embed_dim=embed_dim

        self.emb=paddle.nn.Embedding(vocab_size,embed_dim)
        self.gru=paddle.nn.GRU(embed_dim,hidden_size,2)

        self.l1=paddle.nn.Linear(hidden_size,64)
        self.l2=paddle.nn.Linear(64,32)
        self.l3=paddle.nn.Linear(32,self.numclass)

        self.drop=paddle.nn.Dropout(0.5)    
    def forward(self,x):
        x=self.emb(x)
        x,states=self.gru(x)
        x=paddle.mean(x,axis=1)

        x=self.drop(x)

        out=paddle.nn.functional.relu(self.l1(x))
        out=self.drop(out)
        out=paddle.nn.functional.relu(self.l2(out))
        out=self.l3(out)
        out=paddle.nn.functional.softmax(out,axis=-1)        return out
登录后复制
   
In [38]
mynet=Mynet(vocab_size,embed_dim,hidden_size,tensor_maxlen,numclass)
登录后复制
   
In [39]
paddle.summary(mynet,(128,15),dtypes='int64')
登录后复制
       
--------------------------------------------------------------------------------------
 Layer (type)       Input Shape               Output Shape               Param #    
======================================================================================
  Embedding-1       [[128, 15]]              [128, 15, 256]            38,148,352   
     GRU-1        [[128, 15, 256]]   [[128, 15, 128], [2, 128, 128]]     247,296    
   Dropout-1        [[128, 64]]                 [128, 64]                   0       
   Linear-1         [[128, 128]]                [128, 64]                 8,256     
   Linear-2         [[128, 64]]                 [128, 32]                 2,080     
   Linear-3         [[128, 32]]                 [128, 14]                  462      
======================================================================================
Total params: 38,406,446
Trainable params: 38,406,446
Non-trainable params: 0
--------------------------------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 6.04
Params size (MB): 146.51
Estimated Total Size (MB): 152.56
--------------------------------------------------------------------------------------
登录后复制
       
{'total_params': 38406446, 'trainable_params': 38406446}
登录后复制
               
In [40]
epochs = 20lr=0.001log_freq=1000model_path='./model/train_model'
登录后复制
   

9.3训练网络

In [41]
model=paddle.Model(mynet)# 为模型训练做准备,设置优化器,损失函数和精度计算方式model.prepare(optimizer=paddle.optimizer.Adam(learning_rate=lr,parameters=model.parameters()),
              loss=paddle.nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())
登录后复制
   
In [ ]
model.fit(train_data=train_loader,
           eval_data=val_loader,
           epochs=epochs,
           eval_freq=1,
           save_freq=5,
           save_dir=model_path,
           
           verbose=1,
           callbacks=[paddle.callbacks.VisualDL('./log')])
登录后复制
   

9.4 训练精度展示 20epochs:

【NLP】常规赛:中文新闻文本标题分类 - php中文网【NLP】常规赛:中文新闻文本标题分类 - php中文网        

In [43]
model.save('./model/infer')
登录后复制
   

10.加载网络进行预测

10.1 加载训练好的模型

In [44]
infer_model=paddle.Model(Mynet(vocab_size,embed_dim,hidden_size,tensor_maxlen,numclass))
infer_model.load('./model/infer')
登录后复制
   
In [45]
with open('result.txt','w',encoding="utf-8") as res:    for title in test_tensor:
        re = infer_model.predict_batch([[title]])        #print(re)
        index=paddle.argmax(paddle.to_tensor(re))
        index=int(index[0])        #print(type(index))
        #print(dict_label[index])
        res.write(dict_label[index]+'\n')print('_____________over__________over______________')
登录后复制
       
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/tensor/creation.py:130: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  if data.dtype == np.object:
登录后复制
       
_____________over__________over______________
登录后复制
       

以上就是【NLP】常规赛:中文新闻文本标题分类的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号