FSACOCO数据集由北理工无人驾驶方程式车队搭建,用于中国大学生无人驾驶赛事视觉部分,含42张带标注的红蓝锥桶图像。介绍了两种基于飞桨的训练方式:PaddleDetection需克隆仓库、改参数等,PPYOLO v2训练后mAP50达99.01%;PaddleX则通过低代码完成全流程。两者均涉及模型导出与部署,可参考BITFSD开源3.0。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

FSACOCO 数据集由 北京理工大学无人驾驶方程式车队 进行搭建并维护,致力于中国大学生无人驾驶方程式赛事中视觉部分的应用,该项赛事使用红蓝锥桶代表赛道边界,参赛队伍需要在未知地图的条件下得到最快圈时,同类数据集可参考FSOCO ,由苏黎世联邦理工学院AMZ车队进行维护,为德国大学生无人驾驶方程式大赛视觉部分数据集。
此项目作为北京理工大学无人驾驶方程式车队FSD开源3.0中目标检测模块进行展示
!unzip data/data126556/dataset_sample.zip -d ./dataset_sample
PaddleDetection为基于飞桨PaddlePaddle的端到端目标检测套件,提供多种主流目标检测、实例分割、跟踪、关键点检测算法,配置化的网络模块组件、数据增强策略、损失函数等,推出多种服务器端和移动端工业级SOTA模型,并集成了模型压缩和跨平台高性能部署能力,帮助开发者更快更好完成端到端全开发流程。
模型性能概览
各模型结构和骨干网络的代表模型在COCO数据集上精度mAP和单卡Tesla V100上预测速度(FPS)对比图。
由于原始仓库为github链接,下载较慢,可以更换为gitee链接
!git clone https://gitee.com/Feng1909/PaddleDetection.git
!pip install -r PaddleDetection/requirements.txt
以训练PPYOLO v2为例
同理可以训练所有PaddleDetection支持的模型
修改为以下路径
metric: VOCmap_type: 11pointnum_classes: 3TrainDataset:
!VOCDataSet
dataset_dir: ./
anno_path: ./dataset_sample/train.txt
label_list: ./dataset_sample/labels.txt
data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']EvalDataset:
!VOCDataSet
dataset_dir: ./
anno_path: ./dataset_sample/eval.txt
label_list: ./dataset_sample/labels.txt
data_fields: ['image', 'gt_bbox', 'gt_class', 'difficult']TestDataset:
!ImageFolder
anno_path: ./dataset_sample/labels.txt# 从头开始训练,大约需要30分钟# bbox mAP50能达到99.01%!python PaddleDetection/tools/train.py -c PaddleDetection/configs/ppyolo/ppyolov2_r50vd_dcn_voc.yml --use_vdl=true --eval# 中途中断,继续训练,更改output/ppyolov2_r50vd_dcn_voc/248.pdparams为中断前的模型参数# !python PaddleDetection/tools/train.py -c PaddleDetection/configs/ppyolo/ppyolov2_r50vd_dcn_voc.yml -r output/ppyolov2_r50vd_dcn_voc/248.pdparams --use_vdl=true --eval
!python PaddleDetection/tools/export_model.py -c PaddleDetection/configs/ppyolo/ppyolov2_r50vd_dcn_voc.yml --output_dir=./inference_model \ -o weights=output/ppyolov2_r50vd_dcn_voc/best_model # TestReader.inputs_def.image_shape=[3,640,640]
参见BITFSD开源3.0
PaddleX 集成飞桨智能视觉领域图像分类、目标检测、语义分割、实例分割任务能力,将深度学习开发全流程从数据准备、模型训练与优化到多端部署端到端打通,并提供统一任务API接口及图形化开发界面Demo。开发者无需分别安装不同套件,以低代码的形式即可快速完成飞桨全流程开发。
!pip install paddlex==2.1
# 设置使用0号GPU卡(如无GPU,执行此代码后仍然会使用CPU训练模型)import matplotlib
matplotlib.use('Agg')
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'import paddlex as pdxfrom paddlex import transforms as T
train_transforms = T.Compose([
T.MixupImage(mixup_epoch=-1), T.RandomDistort(),
T.RandomExpand(im_padding_value=[123.675, 116.28, 103.53]), T.RandomCrop(),
T.RandomHorizontalFlip(), T.BatchRandomResize(
target_sizes=[192, 224, 256, 288, 320, 352, 384, 416, 448, 480, 512],
interp='RANDOM'), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
eval_transforms = T.Compose([
T.Resize(
target_size=320, interp='CUBIC'), T.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])import paddlex as pdx
train_dataset = pdx.datasets.VOCDetection(
data_dir='dataset_sample',
file_list='dataset_sample/train.txt',
label_list='dataset_sample/labels.txt',
transforms=train_transforms,
shuffle=True)
eval_dataset = pdx.datasets.VOCDetection(
data_dir='dataset_sample',
file_list='dataset_sample/eval.txt',
label_list='dataset_sample/labels.txt',
transforms=eval_transforms)num_classes = len(train_dataset.labels)# model = pdx.det.YOLOv3(num_classes=num_classes)# model = pdx.det.PPYOLO(num_classes=num_classes)model = pdx.det.PPYOLOv2(num_classes=num_classes)
model.train(
num_epochs=550,
train_dataset=train_dataset,
train_batch_size=24,
eval_dataset=eval_dataset,
pretrain_weights=None,
learning_rate=0.000125,
warmup_steps=100,
warmup_start_lr=0.0,
lr_decay_epochs=[130, 540],
lr_decay_gamma=.5,
early_stop=True,
save_interval_epochs=20,
save_dir='output/ppyolov2', # resume_checkpoint='output/yolov3/epoch_430',
use_vdl=True)若需使用TensorRT加速,则--fixed_input_shape为必需项
!paddlex --export_inference --model_dir=./output/ppyolov2/best_model/ \
--save_dir=./inference_model # --fixed_input_shape=[224,224]参见BITFSD开源3.0
以上就是基于Paddle工具链:ROS目标检测部署方案的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号