本文介绍了基于PaddlePaddle实现的ConvNeXt模型。该模型由标准ConvNet模块构成,借鉴Swin-Transformer优化策略,在ImageNet上达82.1%复现精度,优于部分Transformers。文中详述数据集、环境准备、模型结构、训练评估流程,还包含推理部署、自动化测试等内容,为模型使用提供全面指导。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

这是一个 PaddlePaddle 实现的 ConvNeXt。
ConvNeXts完全由标准的ConvNet模块构成,在精确度和可扩展性方面与Transformers竞争,达到87.8%的ImageNet top-1精确度,在COCO检测和ADE20K分割方面优于Swin Transformers,同时保持了标准ConvNet的简单性和效率。
在ConvNeXt中,它的优化策略借鉴了Swin-Transformer。具体的优化策略包括:
(1)将训练Epoch数从90增加到300;
(2)优化器从SGD改为AdamW;
(3)更复杂的数据扩充策略,包括Mixup,CutMix,RandAugment,Random Erasing等;
(4)增加正则策略,例如随机深度,标签平滑,EMA等。
论文: A ConvNet for the 2020s
参考repo: ConvNeXt
在此非常感谢s9xie和HannaMao等人贡献的ConvNeXt,提高了本repo复现论文的效率。
数据集为ImageNet,训练集包含1281167张图像,验证集包含50000张图像。
│imagenet ├──train │ ├── n01440764 │ │ ├── n01440764_10026.JPEG │ │ ├── n01440764_10027.JPEG │ │ ├── ......│ ├── ......├──val │ ├── n01440764 │ │ ├── ILSVRC2012_val_00000293.JPEG │ │ ├── ILSVRC2012_val_00002138.JPEG │ │ ├── ......│ ├── ......
您可以从ImageNet 官网申请下载数据。
| 模型 | top1 acc (参考精度) | top1 acc (复现精度) | 权重 | 训练日志 |
|---|---|---|---|
| convnext_tiny | 0.821 | 0.821 | checkpoint-best.pd | log.txt |
权重及训练日志下载地址:百度网盘 or work/checkpoint-best.pd
硬件和框架版本等环境的要求如下:
%cd /home/aistudio/# !git clone https://github.com/flytocc/ConvNeXt-paddle.git!unzip ConvNeXt-paddle-main.zip
# 需要安装2.2及以上版本的Paddle,如果# 安装GPU版本的Paddlepip install paddlepaddle-gpu==2.2.0# 安装CPU版本的Paddlepip install paddlepaddle==2.2.0
更多安装方法可以参考:Paddle安装指南。
%cd /home/aistudio/ConvNeXt-paddle-main !pip install -r requirements.txt
如果您已经ImageNet1k数据集,那么该步骤可以跳过,如果您没有,则可以从ImageNet官网申请下载。
如果只是希望快速体验模型训练功能,可以参考:飞桨训推一体认证(TIPC)开发文档
如果您希望直接体验评估或者预测推理过程,可以直接根据第2章的内容下载提供的预训练模型,直接体验模型评估、预测、推理部署等内容。
ConvNeXt Block
class Block(nn.Layer):
r""" ConvNeXt Block. There are two equivalent implementations:
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
We use (2) as we find it slightly faster in PyTorch
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
super().__init__()
self.dwconv = nn.Conv2D(dim, dim, 7, padding=3,
groups=dim) # depthwise conv
self.norm = nn.LayerNorm(dim, epsilon=1e-6) # pointwise/1x1 convs, implemented with linear layers
self.pwconv1 = nn.Linear(dim, 4 * dim)
self.act = nn.GELU()
self.pwconv2 = nn.Linear(4 * dim, dim) if layer_scale_init_value > 0:
self.gamma = self.create_parameter(
shape=[dim],
default_initializer=Constant(value=layer_scale_init_value)) else:
self.gamma = None
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity() def forward(self, x):
input = x
x = self.dwconv(x)
x = x.transpose([0, 2, 3, 1]) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.pwconv2(x) if self.gamma is not None:
x = self.gamma * x
x = x.transpose([0, 3, 1, 2]) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x) return x%cd /home/aistudio/ConvNeXt-paddle-main
%run predict.py \
--model convnext_tiny \
--infer_imgs ./demo/ILSVRC2012_val_00020010.JPEG \
--resume /home/aistudio/work/checkpoint-best.pd最终输出结果为
[{'class_ids': [178, 211, 85, 236, 246], 'scores': [0.8764159083366394, 0.0005395704065449536, 0.0005327172111719847, 0.000466014607809484, 0.0004493744927458465], 'file_name': '/home/aistudio/ConvNeXt-paddle-main/demo/ILSVRC2012_val_00020010.JPEG', 'label_names': ['Weimaraner', 'vizsla, Hungarian pointer', 'quail', 'Doberman, Doberman pinscher', 'Great Dane']}]表示预测的类别为Weimaraner(魏玛猎狗),ID是178,置信度为0.8764159083366394。
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus="0,1,2,3" \
main.py \
--model convnext_tiny --drop_path 0.1 \
--batch_size 128 --lr 4e-3 --accum_iter 8 \
--warmup_epochs 20 \
--model_ema --model_ema_eval --dist_eval \
--data_path /path/to/imagenet/ \
--cls_label_path_train /path/to/train_list.txt \
--cls_label_path_val /path/to/val_list.txt \
--output_dir output/convnext_tinyps: 如果未指定cls_label_path_train/cls_label_path_val,会读取data_path下train/val里的图片作为train-set/val-set。
部分训练日志如下所示。
[11:46:22.948892] Epoch: [96] [ 840/2502] eta: 0:15:25 lr: 0.003310 loss: 3.6854 (3.5704) time: 0.5759 data: 0.0005[11:46:33.860486] Epoch: [96] [ 860/2502] eta: 0:15:14 lr: 0.003310 loss: 3.6475 (3.5700) time: 0.5454 data: 0.0005
python eval.py \
--model convnext_tiny \
--batch_size 128 \
--data_path /path/to/imagenet/ \
--cls_label_path_val /path/to/val_list.txt \
--resume $TRAINED_MODELps: 如果未指定cls_label_path_val,会读取data_path/val里的图片作为val-set。
可以参考模型导出,
将该模型转为 inference 模型只需运行如下命令:
%run export_model.py \
--model convnext_tiny \
--output_dir ./output/ \
--resume /home/aistudio/work/checkpoint-best.pd%run infer.py \
--model_file ./output/model.pdmodel \
--params_file ./output/model.pdiparams \
--input_file ./demo/ILSVRC2012_val_00020010.JPEG输出结果为
[{'class_ids': [178, 211, 85, 236, 246], 'scores': [0.876124918460846, 0.0005408977158367634, 0.0005338680348359048, 0.0004670217458624393, 0.0004502409719862044], 'file_name': './demo/ILSVRC2012_val_00020010.JPEG', 'label_names': ['Weimaraner', 'vizsla, Hungarian pointer', 'quail', 'Doberman, Doberman pinscher', 'Great Dane']}]表示预测的类别为Weimaraner(魏玛猎狗),ID是178,置信度为0.876124918460846。与predict.py结果的误差在正常范围内。
Serving部署教程可参考:链接。
详细日志在test_tipc/output
TIPC: TIPC: test_tipc/README.md
首先安装auto_log,需要进行安装,安装方式如下: auto_log的详细介绍参考https://github.com/LDOUBLEV/AutoLog。
git clone https://github.com/LDOUBLEV/AutoLog cd AutoLog/ pip3 install -r requirements.txt python3 setup.py bdist_wheel pip3 install ./dist/auto_log-1.2.0-py3-none-any.whl
进行TIPC:
bash test_tipc/prepare.sh test_tipc/config/ConvNeXt/convnext_tiny.txt 'lite_train_lite_infer'bash test_tipc/test_train_inference_python.sh test_tipc/config/ConvNeXt/convnext_tiny.txt 'lite_train_lite_infer'
TIPC结果:
如果运行成功,在终端中会显示下面的内容,具体的日志也会输出到test_tipc/output/文件夹中的文件中。
Run successfully with command - python3.7 main.py --model=convnext_tiny --data_path=./dataset/ILSVRC2012/ --cls_label_path_train=./dataset/ILSVRC2012/train_list.txt --cls_label_path_val=./dataset/ILSVRC2012/val_list.txt --dist_eval --output_dir=./test_tipc/output/norm_train_gpus_0_autocast_null/convnext_tiny --epochs=2 --batch_size=8 !Run successfully with command - python3.7 eval.py --model=convnext_tiny --data_path=./dataset/ILSVRC2012/ --cls_label_path_val=./dataset/ILSVRC2012/val_list.txt --resume=./test_tipc/output/norm_train_gpus_0_autocast_null/convnext_tiny/checkpoint-latest.pd !Run successfully with command - python3.7 export_model.py --model=convnext_tiny --resume=./test_tipc/output/norm_train_gpus_0_autocast_null/convnext_tiny/checkpoint-latest.pd --output=./test_tipc/output/norm_train_gpus_0_autocast_null !Run successfully with command - python3.7 infer.py --use_gpu=True --use_tensorrt=False --precision=fp32 --model_file=./test_tipc/output/norm_train_gpus_0_autocast_null/model.pdmodel --batch_size=1 --input_file=./dataset/ILSVRC2012/val --params_file=./test_tipc/output/norm_train_gpus_0_autocast_null/model.pdiparams > ./test_tipc/output/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !......
在并入PaddleClas时,碰到缺少梯度累加和EMA的问题。所以我自己实现了一个版本。
This project is released under the MIT license.
以上就是基于PaddlePaddle的ConvNeXt复现的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号