基于PaddleGAN的LSERCNN模型实现卡通画超分

P粉084495128
发布: 2025-07-25 13:35:26
原创
1040人浏览过
本文介绍基于PaddleGAN的LSERCNN模型实现卡通画超分的流程:先通过GitHub或Gitee安装PaddleGAN,解压并链接卡通画超分数据集;修改配置文件参数后训练模型,再用训练好的模型测试;最后展示了LESRCNN模型的实验结果,包括PSNR、SSIM等指标及模型下载方式。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddlegan的lsercnn模型实现卡通画超分 - php中文网

基于PaddleGAN的LSERCNN模型实现卡通画超分

1.实现卡通画超分

基于PaddleGAN的LSERCNN模型 实现卡通画超分

1.1 安装PaddleGAN

PaddleGAN的安装目前支持Clone GitHub和Gitee两种方式:

In [ ]
# 安装ppgan# 当前目录在: /home/aistudio/, 这个目录也是左边文件和文件夹所在的目录# 克隆最新的PaddleGAN仓库到当前目录# !git clone https://github.com/PaddlePaddle/PaddleGAN.git# 如果从github下载慢可以从gitee clone:!git clone https://gitee.com/paddlepaddle/PaddleGAN.git# 安装Paddle GAN%cd PaddleGAN/
!pip install -v -e .
登录后复制
   

1.2 数据准备

我们为大家准备了处理好的超分数据集卡通画超分数据集

In [ ]
# 回到/home/aistudio/下%cd /home/aistudio# 解压数据!unzip -q data/data80790/animeSR.zip -d data/# 将解压后的数据链接到` /home/aistudio/PaddleGAN/data `目录下!mv data/animeSR PaddleGAN/data/
登录后复制
   

1.2.1 数据集的组成形式

    PaddleGAN
      ├── data
          ├── animeSR
                ├── train
                ├── train_X4
                ├── test
                └── test_X4
登录后复制
       

训练数据集包括400张卡通画,其中train中是高分辨率图像,train_X4中是对应的4倍缩小的低分辨率图像。测试数据集包括20张卡通画,其中test中是高分辨率图像,test_X4中是对应的4倍缩小的低分辨率图像。

1.2.2 数据可视化

In [ ]
import osimport cv2import numpy as npimport matplotlib.pyplot as plt# 训练数据统计train_names = os.listdir('PaddleGAN/data/animeSR/train')print(f'训练集数据量: {len(train_names)}')# 测试数据统计test_names = os.listdir('PaddleGAN/data/animeSR/test')print(f'测试集数据量: {len(test_names)}')# 训练数据可视化img = cv2.imread('PaddleGAN/data/animeSR/train/Anime_1.jpg')
img = img[:,:,::-1]
plt.figure()
plt.imshow(img)
plt.show()
登录后复制
   

数据可视化展示(展示数据集其中几张):

基于PaddleGAN的LSERCNN模型实现卡通画超分 - php中文网        

基于PaddleGAN的LSERCNN模型实现卡通画超分 - php中文网        

基于PaddleGAN的LSERCNN模型实现卡通画超分 - php中文网        

1.3 选择超分模型

PaddleGAN中提供的超分模型包括RealSR, ESRGAN, LESRCNN, DRN等,详情可见超分模型。

接下来以LESRCNN为例进行演示。

1.3.1 修改配置文件

所有模型的配置文件均在/home/aistudio/PaddleGAN/configs目录下。

找到你需要的模型的配置文件,修改模型参数,一般修改迭代次数,num_workers,batch_size以及数据集路径。有能力的同学也可以尝试修改其他参数,或者基于现有模型进行二次开发,模型代码在/home/aistudio/PaddleGAN/ppgan/models目录下。

以LESRCNN为例,这里将将配置文件lesrcnn_psnr_x4_div2k.yaml中的

参数total_iters改为50000

参数dataset:train:num_workers改为4

参数dataset:train:batch_size改为16

AI卡通生成器
AI卡通生成器

免费在线AI卡通图片生成器 | 一键将图片或文本转换成精美卡通形象

AI卡通生成器 51
查看详情 AI卡通生成器

参数dataset:train:gt_folder改为data/animeSR/train

参数dataset:train:lq_folder改为data/animeSR/train_X4

参数dataset:test:gt_folder改为data/animeSR/test

参数dataset:test:lq_folder改为data/animeSR/test_X4

1.4 训练模型

以LESRCNN为例,运行以下代码训练LESRCNN模型。

如果希望使用其他模型训练,可以修改配置文件名字。

In [ ]
%cd /home/aistudio/PaddleGAN/
!python -u tools/main.py --config-file configs/lesrcnn_psnr_x4_div2k.yaml
登录后复制
   

1.5 测试模型

以LESRCNN为例,模型训练好后,运行以下代码测试LESRCNN模型。

其中/home/aistudio/pretrained_model/LESRCNN_PSNR_50000_weight.pdparams是刚才ESRGAN训练的模型参数,同学们需要换成自己的模型参数。

如果希望使用其他模型测试,可以修改配置文件名字。

In [ ]
%cd /home/aistudio/PaddleGAN/
!python tools/main.py --config-file configs/lesrcnn_psnr_x4_div2k.yaml --evaluate-only --load /home/aistudio/pretrained_model/LESRCNN_PSNR_50000_weight.pdparams
登录后复制
   

1.6 实验结果展示及模型下载

这里使用LESRCNN模型训练了一个基于PSNR指标的预测模型。

数值结果展示及模型下载

方法 数据集 迭代次数 训练时长 PSNR SSIM 模型下载
LESRCNN_PSNR 卡通画超分数据集 50000 2h 24.9480 0.7469 LESRCNN_PSNR

最后效果

基于PaddleGAN的LSERCNN模型实现卡通画超分 - php中文网        

基于PaddleGAN的LSERCNN模型实现卡通画超分 - php中文网        

以上就是基于PaddleGAN的LSERCNN模型实现卡通画超分的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号