本文围绕英雄联盟对局胜负预测展开,使用18万条训练数据和2万条测试数据,涵盖击杀、伤害等多维度特征。通过数据预处理、EDA分析,采用逻辑回归、随机森林等模型及模型融合,结合神经网络模型,以准确率为指标,最终生成预测结果并按要求格式提交。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

实时对战游戏是人工智能研究领域的一个热点。由于游戏复杂性、部分可观察和动态实时变化战局等游戏特点使得研究变得比较困难。我们可以在选择英雄阶段预测胜负概率,也可以在比赛期间根据比赛实时数据进行建模。那么我们英雄联盟对局进行期间,能知道自己的胜率吗?
比赛数据使用了英雄联盟玩家的实时游戏数据,记录下用户在游戏中对局数据(如击杀数、住物理伤害)。希望参赛选手能从数据集中挖掘出数据的规律,并预测玩家在本局游戏中的输赢情况。
赛题训练集案例如下:
import pandas as pdimport numpy as nptrain = pd.read_csv('train.csv.zip')对于数据集中每一行为一个玩家的游戏数据,数据字段如下所示:
选手需要提交测试集队伍排名预测,具体的提交格式如下:
win0110
本次竞赛的使用准确率进行评分,数值越高精度越高,评估代码参考:
from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3]y_true = [0, 1, 2, 3]accuracy_score(y_true, y_pred)
#!pip install numpy==1.19#!pip install -U scikit-learn numpy
import sklearn
import pandas as pdimport paddleimport numpy as np
%pylab inlineimport seaborn as sns
train_df_raw = pd.read_csv('data/data137276/train.csv.zip')
test_df_raw = pd.read_csv('data/data137276/test.csv.zip')
train_df = train_df_raw.drop(['id', 'timecc'], axis=1)
test_df = test_df_raw.drop(['id', 'timecc'], axis=1)train_df_raw
train_df
win kills deaths assists largestkillingspree largestmultikill \
0 0 1 5 2 0 1
1 0 5 8 7 3 1
2 1 1 6 16 0 1
3 0 1 2 0 0 1
4 0 4 11 25 0 1
... ... ... ... ... ... ...
179995 1 1 6 12 0 1
179996 1 7 3 4 5 1
179997 1 9 0 9 9 1
179998 1 14 1 5 10 2
179999 1 4 4 2 2 1
longesttimespentliving doublekills triplekills quadrakills ... \
0 569 0 0 0 ...
1 880 0 0 0 ...
2 593 0 0 0 ...
3 381 0 0 0 ...
4 455 0 0 0 ...
... ... ... ... ... ...
179995 362 0 0 0 ...
179996 574 0 0 0 ...
179997 0 0 0 0 ...
179998 980 3 0 0 ...
179999 559 0 0 0 ...
totheal totunitshealed dmgtoturrets totdmgtaken magicdmgtaken \
0 849 2 0 7819 2178
1 642 4 303 24637 5607
2 2326 3 329 18749 3651
3 1555 1 0 12134 1739
4 6630 8 0 27891 14068
... ... ... ... ... ...
179995 3559 3 5751 14786 2374
179996 2529 2 8907 11019 3933
179997 11494 4 6627 14279 3661
179998 6555 1 1943 19165 4818
179999 608 1 1590 10992 7681
physdmgtaken truedmgtaken wardsplaced wardskilled firstblood
0 5239 401 4 1 0
1 17635 1394 10 0 0
2 14834 263 7 1 0
3 10318 76 8 1 0
4 12749 1073 34 2 0
... ... ... ... ... ...
179995 12309 102 12 1 0
179996 6533 552 7 2 0
179997 10617 0 7 2 1
179998 14110 236 6 0 0
179999 3065 246 7 1 0
[180000 rows x 30 columns]#查看标签train_df['win']
#查看数据内容train_df.columns
train_df.info()
#缺失值print(type(train_df.isnull())) train_df.isnull()
#查看缺失值个数train_df.isnull().sum()
#查看缺失值比例train_df.isnull().mean(axis=0)
train_df['win'].value_counts().plot(kind='bar')
sns.distplot(train_df['kills'])
sns.distplot(train_df['deaths'])
sns.boxplot(y='kills', x='win', data=train_df)
plt.scatter(train_df['kills'], train_df['deaths'])
plt.xlabel('kills')
plt.ylabel('deaths')for col in train_df.columns[1:]:
train_df[col] /= train_df[col].max()
test_df[col] /= test_df[col].max()from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold,cross_validate
#取出标签x=train_df.drop(['win'], axis=1) y=train_df.win
x
kills deaths assists largestkillingspree largestmultikill \
0 1 5 2 0 1
1 5 8 7 3 1
2 1 6 16 0 1
3 1 2 0 0 1
4 4 11 25 0 1
... ... ... ... ... ...
179995 1 6 12 0 1
179996 7 3 4 5 1
179997 9 0 9 9 1
179998 14 1 5 10 2
179999 4 4 2 2 1
longesttimespentliving doublekills triplekills quadrakills \
0 569 0 0 0
1 880 0 0 0
2 593 0 0 0
3 381 0 0 0
4 455 0 0 0
... ... ... ... ...
179995 362 0 0 0
179996 574 0 0 0
179997 0 0 0 0
179998 980 3 0 0
179999 559 0 0 0
pentakills ... totheal totunitshealed dmgtoturrets totdmgtaken \
0 0 ... 849 2 0 7819
1 0 ... 642 4 303 24637
2 0 ... 2326 3 329 18749
3 0 ... 1555 1 0 12134
4 0 ... 6630 8 0 27891
... ... ... ... ... ... ...
179995 0 ... 3559 3 5751 14786
179996 0 ... 2529 2 8907 11019
179997 0 ... 11494 4 6627 14279
179998 0 ... 6555 1 1943 19165
179999 0 ... 608 1 1590 10992
magicdmgtaken physdmgtaken truedmgtaken wardsplaced wardskilled \
0 2178 5239 401 4 1
1 5607 17635 1394 10 0
2 3651 14834 263 7 1
3 1739 10318 76 8 1
4 14068 12749 1073 34 2
... ... ... ... ... ...
179995 2374 12309 102 12 1
179996 3933 6533 552 7 2
179997 3661 10617 0 7 2
179998 4818 14110 236 6 0
179999 7681 3065 246 7 1
firstblood
0 0
1 0
2 0
3 0
4 0
... ...
179995 0
179996 0
179997 1
179998 0
179999 0
[180000 rows x 29 columns]y
0 0
1 0
2 1
3 0
4 0
..
179995 1
179996 1
179997 1
179998 1
179999 1
Name: win, Length: 180000, dtype: int64print('特征向量形状{}'.format(x.shape))print('标签形状{}'.format(y.shape))print('标签类别{}'.format(np.unique(y)))print('测试集特征形状{}'.format(test_df.shape))特征向量形状(180000, 29) 标签形状(180000,) 标签类别[0 1] 测试集特征形状(20000, 29)
#数据集划分 /这里分出的test部分用于二次验证Xtrain,Xtest,Ytrain,Ytest=train_test_split(x,y,test_size=0.2,random_state=1412)
#验证指验证集,而非测试集的特征向量。print('用于训练的特征向量形状{}'.format(Xtrain.shape))print('用于训练的标签形状{}'.format(Ytrain.shape))print('用于验证的特征向量形状{}'.format(Xtest.shape))print('用于验证的标签形状{}'.format(Ytest.shape))用于训练的特征向量形状(144000, 29) 用于训练的标签形状(144000,) 用于验证的特征向量形状(36000, 29) 用于验证的标签形状(36000,)
def individual_estimators(estimators):
train_score=[]
cv_mean=[]
test_score=[] for estimator in estimators:
cv=KFold(n_splits=5,shuffle=True,random_state=1412)
results=cross_validate(estimator[1],Xtrain,Ytrain
,cv=cv
,scoring="accuracy"
,n_jobs=8
,return_train_score=True
,verbose=False)
test=estimator[1].fit(Xtrain,Ytrain).score(Xtest,Ytest)
train_score.append(results["train_score"].mean())
cv_mean.append(results["test_score"].mean())
test_score.append(test) for i in range(len(estimators)): print("-------------------------------------------") print(
estimators[i]
,"\n train_score_mean:{}".format(train_score[i])
,"\n cv_mean:{}".format(cv_mean[i])
,"\n test_score:{}".format(test_score[i])
,"\n") def fusion_estimators(estimators):
cv=KFold(n_splits=5,shuffle=True,random_state=1412)
results=cross_validate(clf,Xtrain,Ytrain
,cv=cv
,scoring="accuracy"
,n_jobs=-1
,return_train_score=True
,verbose=False)
test=clf.fit(Xtrain,Ytrain).score(Xtest,Ytest) print("++++++++++++++++++++++++++++++++++++++++++++++") print( "\n train_score_mean:{}".format(results["train_score"].mean())
,"\n cv_mean:{}".format(results["test_score"].mean())
,"\n test_score:{}".format(test)
)from sklearn.neighbors import KNeighborsClassifier as KNNCfrom sklearn.tree import DecisionTreeClassifier as DTRfrom sklearn.ensemble import RandomForestClassifier as RFCfrom sklearn.ensemble import GradientBoostingClassifier as GBCfrom sklearn.linear_model import LogisticRegression as LogiRfrom sklearn.ensemble import VotingClassifier
虽然每一个弱分类器并不强,但都能代表一组其对应的假设空间。真实世界的数据分布是多远随机的复杂系统,往往其中一种并不能有一个好的近似结果。模型融合是一种简单粗暴的办法,考虑多重分布的组合。当然,模型融合的结果并不一定好,只是大部分时间是好的。
clf1=LogiR(max_iter=3000,random_state=1412,n_jobs=8) clf2=RFC(n_estimators=100,random_state=1412,n_jobs=8) clf3=GBC(n_estimators=100,random_state=1412)
estimators=[("Logistic Regression",clf1),("RandomForest",clf2),("GBDT",clf3)]
clf=VotingClassifier(estimators,voting="soft")individual_estimators(estimators)
logi=LogiR(max_iter=3000,n_jobs=8) fusion_estimators(logi)
test_predict_sklearn=clf.predict(test_df) test_predict_sklearn=clf.predict_proba(test_df)
print(test_predict_sklearn.shape)print(test_predict_sklearn)
(20000, 2) [[0.87535621 0.12464379] [0.77675525 0.22324475] [0.16242339 0.83757661] ... [0.94152587 0.05847413] [0.90214731 0.09785269] [0.10380786 0.89619214]]
import paddle.fluid
class MyModel(paddle.nn.Layer):
# self代表类的实例自身
def __init__(self):
# 初始化父类中的一些参数
super(MyModel, self).__init__()
self.fc1 = paddle.nn.Linear(in_features=29, out_features=30)
self.hidden1=paddle.fluid.BatchNorm(30)
self.relu1=paddle.nn.ReLU()
self.fc2 = paddle.nn.Linear(in_features=30, out_features=8)
self.relu2=paddle.nn.LeakyReLU()
self.fc3 = paddle.nn.Linear(in_features=8, out_features=6)
self.relu3=paddle.nn.Sigmoid()
self.fc4 = paddle.nn.Linear(in_features=6, out_features=4)
self.fc5=paddle.nn.Linear(in_features=4, out_features=2)
self.softmax = paddle.nn.Softmax() # 网络的前向计算
def forward(self, inputs):
x = self.fc1(inputs) #x = self.relu1(x)
x = self.hidden1(x)
x = self.fc2(x)
x = self.relu2(x)
x = self.fc3(x)
x = self.relu3(x)
x=self.fc4(x)
x=self.fc5(x) #x=self.fc6(x)
x = self.softmax(x) return xmodel = MyModel() model.train() opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
EPOCH_NUM = 10 # 设置外层循环次数BATCH_SIZE = 100 # 设置batch大小training_data = train_df.iloc[:-1000,].values.astype(np.float32)
val_data = train_df.iloc[-1000:, ].values.astype(np.float32)# 定义外层循环for epoch_id in range(EPOCH_NUM): # 在每轮迭代开始之前,将训练数据的顺序随机的打乱
np.random.shuffle(training_data)
# 将训练数据进行拆分,每个batch包含10条数据
mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
# 定义内层循环
for iter_id, mini_batch in enumerate(mini_batches):
x_data = np.array(mini_batch[:, 1:]) # 获得当前批次训练数据
y_label = np.array(mini_batch[:, :1]) # 获得当前批次训练标签
# 将numpy数据转为飞桨动态图tensor的格式
features = paddle.to_tensor(x_data)
y_label = paddle.to_tensor(y_label)
label=np.zeros([len(y_label),2]) for i in range(len(y_label)): if y_label[i]==0:
label[i,0]=1
elif y_label[i]==1:
label[i,1]=1
label=paddle.to_tensor(label,dtype=float32) # 前向计算
predicts = model(features) # 计算损失
loss = paddle.nn.functional.softmax_with_cross_entropy(predicts, label,soft_label=True)
avg_loss = paddle.mean(loss)
# 反向传播,计算每层参数的梯度值
avg_loss.backward()
# 更新参数,根据设置好的学习率迭代一步
opt.step() # 清空梯度变量,以备下一轮计算
opt.clear_grad()/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/data_feeder.py:51: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations np.bool, np.float16, np.uint16, np.float32, np.float64, np.int8,
model.eval() test_data = paddle.to_tensor(test_df.values.astype(np.float32)) test_predict_dl = model(test_data)
test_predict_dl
Tensor(shape=[20000, 2], dtype=float32, place=CPUPlace, stop_gradient=False,
[[0.31092143, 0.68907863],
[0.89762008, 0.10237990],
[0.00382155, 0.99617851],
...,
[0.97896796, 0.02103199],
[0.98377025, 0.01622973],
[0.00828540, 0.99171454]])test_predict_sklearn
array([[0.87535621, 0.12464379],
[0.77675525, 0.22324475],
[0.16242339, 0.83757661],
...,
[0.94152587, 0.05847413],
[0.90214731, 0.09785269],
[0.10380786, 0.89619214]])#控制融合比例test_predict_=(1/4*(np.array(test_predict_dl)))+(3/4*(test_predict_sklearn))
test_predict=np.zeros([len(test_predict_)])for i in range(len(test_predict_)): if test_predict_[i,0]>test_predict_[i,1]:
test_predict[i]=0
elif test_predict_[i,0]<test_predict_[i,1]:
test_predict[i]=1test_predict
array([0., 0., 1., ..., 0., 0., 1.])
pd.DataFrame({'win':
test_predict
}).to_csv('submission.csv', index=None)
!zip submission.zip submission.csvadding: submission.csv (deflated 94%)
以上就是飞桨常规赛:英雄联盟大师预测赛1月第四名方案分享的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号