本文介绍如何用Paddle 2.0高层API微调RepVGG模型。先导入必要包,构建RepVGG模型及模块,封装模型预设配置,通过paddle.Model配置模型,加载Cifar10数据集,经训练后用model.predict_batch对图片预测,还可借助VisualDL可视化训练数据。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

# 导入 Paddleimport paddleimport paddle.nn as nnfrom paddle.static import InputSpecfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Resize, CenterCrop, Transpose, Normalize, Compose# 导入其他包import cv2import numpy as npfrom IPython.display import Image# 开启静态图# 也可以直接用动态图进行模型训练paddle.enable_static()
# 卷积 + 批归一化class ConvBN(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1):
        super(ConvBN, self).__init__()
        self.conv = nn.Conv2D(in_channels=in_channels, out_channels=out_channels,
                              kernel_size=kernel_size, stride=stride, padding=padding, groups=groups, bias_attr=False)
        self.bn = nn.BatchNorm2D(num_features=out_channels)    def forward(self, x):
        y = self.conv(x)
        y = self.bn(y)        return y# RepVGG 模块class RepVGGBlock(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, dilation=1, groups=1, padding_mode='zeros'):
        super(RepVGGBlock, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.padding_mode = padding_mode        assert kernel_size == 3
        assert padding == 1
        padding_11 = padding - kernel_size // 2
        self.nonlinearity = nn.ReLU()
        self.rbr_identity = nn.BatchNorm2D(
            num_features=in_channels) if out_channels == in_channels and stride == 1 else None
        self.rbr_dense = ConvBN(in_channels=in_channels, out_channels=out_channels,
                                kernel_size=kernel_size, stride=stride, padding=padding, groups=groups)
        self.rbr_1x1 = ConvBN(in_channels=in_channels, out_channels=out_channels,
                              kernel_size=1, stride=stride, padding=padding_11, groups=groups)    def forward(self, inputs):
        if not self.training:            return self.nonlinearity(self.rbr_reparam(inputs))        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)        return self.nonlinearity(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out)    def eval(self):
        if not hasattr(self, 'rbr_reparam'):
            self.rbr_reparam = nn.Conv2D(in_channels=self.in_channels, out_channels=self.out_channels, kernel_size=self.kernel_size, stride=self.stride,
                                         padding=self.padding, dilation=self.dilation, groups=self.groups, padding_mode=self.padding_mode)
        self.training = False
        kernel, bias = self.get_equivalent_kernel_bias()
        self.rbr_reparam.weight.set_value(kernel)
        self.rbr_reparam.bias.set_value(bias)        for layer in self.sublayers():
            layer.eval()    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:            return 0
        else:            return nn.functional.pad(kernel1x1, [1, 1, 1, 1])    def _fuse_bn_tensor(self, branch):
        if branch is None:            return 0, 0
        if isinstance(branch, ConvBN):
            kernel = branch.conv.weight
            running_mean = branch.bn._mean
            running_var = branch.bn._variance
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn._epsilon        else:            assert isinstance(branch, nn.BatchNorm2D)            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros(
                    (self.in_channels, input_dim, 3, 3), dtype=np.float32)                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = paddle.to_tensor(kernel_value)
            kernel = self.id_tensor
            running_mean = branch._mean
            running_var = branch._variance
            gamma = branch.weight
            beta = branch.bias
            eps = branch._epsilon
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape((-1, 1, 1, 1))        return kernel * t, beta - running_mean * gamma / std# RepVGG 模型class RepVGG(nn.Layer):
    def __init__(self, num_blocks, width_multiplier=None, override_groups_map=None, in_channels=3, class_dim=1000):
        super(RepVGG, self).__init__()        assert len(width_multiplier) == 4
        self.override_groups_map = override_groups_map or dict()        assert 0 not in self.override_groups_map
        self.in_planes = min(64, int(64 * width_multiplier[0]))
        self.stage0 = RepVGGBlock(
            in_channels=in_channels, out_channels=self.in_planes, kernel_size=3, stride=2, padding=1)
        self.cur_layer_idx = 1
        self.stage1 = self._make_stage(            int(64 * width_multiplier[0]), num_blocks[0], stride=2)
        self.stage2 = self._make_stage(            int(128 * width_multiplier[1]), num_blocks[1], stride=2)
        self.stage3 = self._make_stage(            int(256 * width_multiplier[2]), num_blocks[2], stride=2)
        self.stage4 = self._make_stage(            int(512 * width_multiplier[3]), num_blocks[3], stride=2)
        self.gap = nn.AdaptiveAvgPool2D(output_size=1)
        self.linear = nn.Linear(int(512 * width_multiplier[3]), class_dim)    def _make_stage(self, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        blocks = []        for stride in strides:
            cur_groups = self.override_groups_map.get(self.cur_layer_idx, 1)
            blocks.append(RepVGGBlock(in_channels=self.in_planes, out_channels=planes, kernel_size=3,
                                      stride=stride, padding=1, groups=cur_groups))
            self.in_planes = planes
            self.cur_layer_idx += 1
        return nn.Sequential(*blocks)    def forward(self, x):
        out = self.stage0(x)
        out = self.stage1(out)
        out = self.stage2(out)
        out = self.stage3(out)
        out = self.stage4(out)
        out = self.gap(out)
        out = paddle.flatten(out, start_axis=1)
        out = self.linear(out)        return out# 模型超参数配置optional_groupwise_layers = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26]
g2_map = {l: 2 for l in optional_groupwise_layers}
g4_map = {l: 4 for l in optional_groupwise_layers}# 各种模型预设配置def RepVGG_A0(**kwargs):
    return RepVGG(num_blocks=[2, 4, 14, 1], width_multiplier=[0.75, 0.75, 0.75, 2.5], override_groups_map=None, **kwargs)def RepVGG_A1(**kwargs):
    return RepVGG(num_blocks=[2, 4, 14, 1], width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, **kwargs)def RepVGG_A2(**kwargs):
    return RepVGG(num_blocks=[2, 4, 14, 1], width_multiplier=[1.5, 1.5, 1.5, 2.75], override_groups_map=None, **kwargs)def RepVGG_B0(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[1, 1, 1, 2.5], override_groups_map=None, **kwargs)def RepVGG_B1(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4], override_groups_map=None, **kwargs)def RepVGG_B1g2(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4], override_groups_map=g2_map, **kwargs)def RepVGG_B1g4(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2, 2, 2, 4], override_groups_map=g4_map, **kwargs)def RepVGG_B2(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=None, **kwargs)def RepVGG_B2g2(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g2_map, **kwargs)def RepVGG_B2g4(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[2.5, 2.5, 2.5, 5], override_groups_map=g4_map, **kwargs)def RepVGG_B3(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5], override_groups_map=None, **kwargs)def RepVGG_B3g2(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5], override_groups_map=g2_map, **kwargs)def RepVGG_B3g4(**kwargs):
    return RepVGG(num_blocks=[4, 6, 16, 1], width_multiplier=[3, 3, 3, 5], override_groups_map=g4_map, **kwargs)# 设置模型的输入和标签images = InputSpec(shape=[-1, 3, 32, 32], dtype='float32', name='images') labels = InputSpec(shape=[-1], dtype='int64', name='labels')# 初始化模型model = paddle.Model(RepVGG_A0(in_channels=3, class_dim=10), inputs=images, labels=labels)# 加载预训练模型参数model.load(path='data/data69662/RepVGG_A0', skip_mismatch=True, reset_optimizer=True)# 打印模型结构model.summary()# 配置优化器opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())# 配置模型model.prepare(optimizer=opt, loss=nn.CrossEntropyLoss(), metrics=paddle.metric.Accuracy(topk=(1, 5)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/hapi/model.py:1206: UserWarning: Skip loading for linear.weight. linear.weight receives a shape [1280, 1000], but the expected shape is [1280, 10].
  ("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/hapi/model.py:1206: UserWarning: Skip loading for linear.bias. linear.bias receives a shape [1000], but the expected shape is [10].
  ("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/hapi/model_summary.py:107: UserWarning: Your model was created in static mode, this may not get correct summary information!
  "Your model was created in static mode, this may not get correct summary information!"
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:636: UserWarning: When training, we now always track global mean and variance.
  "When training, we now always track global mean and variance.")-------------------------------------------------------------------------------
   Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================
     Conv2D-1         [[1, 3, 32, 32]]     [1, 48, 16, 16]         1,296     
   BatchNorm2D-1     [[1, 48, 16, 16]]     [1, 48, 16, 16]          192      
     ConvBN-1         [[1, 3, 32, 32]]     [1, 48, 16, 16]         1,488     
     Conv2D-2         [[1, 3, 32, 32]]     [1, 48, 16, 16]          144      
   BatchNorm2D-2     [[1, 48, 16, 16]]     [1, 48, 16, 16]          192      
     ConvBN-2         [[1, 3, 32, 32]]     [1, 48, 16, 16]          336      
      ReLU-1         [[1, 48, 16, 16]]     [1, 48, 16, 16]           0       
   RepVGGBlock-1      [[1, 3, 32, 32]]     [1, 48, 16, 16]         1,824     
     Conv2D-3        [[1, 48, 16, 16]]      [1, 48, 8, 8]         20,736     
   BatchNorm2D-3      [[1, 48, 8, 8]]       [1, 48, 8, 8]           192      
     ConvBN-3        [[1, 48, 16, 16]]      [1, 48, 8, 8]         20,928     
     Conv2D-4        [[1, 48, 16, 16]]      [1, 48, 8, 8]          2,304     
   BatchNorm2D-4      [[1, 48, 8, 8]]       [1, 48, 8, 8]           192      
     ConvBN-4        [[1, 48, 16, 16]]      [1, 48, 8, 8]          2,496     
      ReLU-2          [[1, 48, 8, 8]]       [1, 48, 8, 8]            0       
   RepVGGBlock-2     [[1, 48, 16, 16]]      [1, 48, 8, 8]         23,424     
   BatchNorm2D-5      [[1, 48, 8, 8]]       [1, 48, 8, 8]           192      
     Conv2D-5         [[1, 48, 8, 8]]       [1, 48, 8, 8]         20,736     
   BatchNorm2D-6      [[1, 48, 8, 8]]       [1, 48, 8, 8]           192      
     ConvBN-5         [[1, 48, 8, 8]]       [1, 48, 8, 8]         20,928     
     Conv2D-6         [[1, 48, 8, 8]]       [1, 48, 8, 8]          2,304     
   BatchNorm2D-7      [[1, 48, 8, 8]]       [1, 48, 8, 8]           192      
     ConvBN-6         [[1, 48, 8, 8]]       [1, 48, 8, 8]          2,496     
      ReLU-3          [[1, 48, 8, 8]]       [1, 48, 8, 8]            0       
   RepVGGBlock-3      [[1, 48, 8, 8]]       [1, 48, 8, 8]         23,616     
     Conv2D-7         [[1, 48, 8, 8]]       [1, 96, 4, 4]         41,472     
   BatchNorm2D-8      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-7         [[1, 48, 8, 8]]       [1, 96, 4, 4]         41,856     
     Conv2D-8         [[1, 48, 8, 8]]       [1, 96, 4, 4]          4,608     
   BatchNorm2D-9      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-8         [[1, 48, 8, 8]]       [1, 96, 4, 4]          4,992     
      ReLU-4          [[1, 96, 4, 4]]       [1, 96, 4, 4]            0       
   RepVGGBlock-4      [[1, 48, 8, 8]]       [1, 96, 4, 4]         46,848     
  BatchNorm2D-10      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     Conv2D-9         [[1, 96, 4, 4]]       [1, 96, 4, 4]         82,944     
  BatchNorm2D-11      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-9         [[1, 96, 4, 4]]       [1, 96, 4, 4]         83,328     
     Conv2D-10        [[1, 96, 4, 4]]       [1, 96, 4, 4]          9,216     
  BatchNorm2D-12      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-10        [[1, 96, 4, 4]]       [1, 96, 4, 4]          9,600     
      ReLU-5          [[1, 96, 4, 4]]       [1, 96, 4, 4]            0       
   RepVGGBlock-5      [[1, 96, 4, 4]]       [1, 96, 4, 4]         93,312     
  BatchNorm2D-13      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     Conv2D-11        [[1, 96, 4, 4]]       [1, 96, 4, 4]         82,944     
  BatchNorm2D-14      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-11        [[1, 96, 4, 4]]       [1, 96, 4, 4]         83,328     
     Conv2D-12        [[1, 96, 4, 4]]       [1, 96, 4, 4]          9,216     
  BatchNorm2D-15      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-12        [[1, 96, 4, 4]]       [1, 96, 4, 4]          9,600     
      ReLU-6          [[1, 96, 4, 4]]       [1, 96, 4, 4]            0       
   RepVGGBlock-6      [[1, 96, 4, 4]]       [1, 96, 4, 4]         93,312     
  BatchNorm2D-16      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     Conv2D-13        [[1, 96, 4, 4]]       [1, 96, 4, 4]         82,944     
  BatchNorm2D-17      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-13        [[1, 96, 4, 4]]       [1, 96, 4, 4]         83,328     
     Conv2D-14        [[1, 96, 4, 4]]       [1, 96, 4, 4]          9,216     
  BatchNorm2D-18      [[1, 96, 4, 4]]       [1, 96, 4, 4]           384      
     ConvBN-14        [[1, 96, 4, 4]]       [1, 96, 4, 4]          9,600     
      ReLU-7          [[1, 96, 4, 4]]       [1, 96, 4, 4]            0       
   RepVGGBlock-7      [[1, 96, 4, 4]]       [1, 96, 4, 4]         93,312     
     Conv2D-15        [[1, 96, 4, 4]]       [1, 192, 2, 2]        165,888    
  BatchNorm2D-19      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-15        [[1, 96, 4, 4]]       [1, 192, 2, 2]        166,656    
     Conv2D-16        [[1, 96, 4, 4]]       [1, 192, 2, 2]        18,432     
  BatchNorm2D-20      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-16        [[1, 96, 4, 4]]       [1, 192, 2, 2]        19,200     
      ReLU-8          [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
   RepVGGBlock-8      [[1, 96, 4, 4]]       [1, 192, 2, 2]        185,856    
  BatchNorm2D-21      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-17        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-22      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-17        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-18        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-23      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-18        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-9          [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
   RepVGGBlock-9      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-24      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-19        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-25      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-19        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-20        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-26      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-20        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-10         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-10      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-27      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-21        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-28      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-21        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-22        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-29      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-22        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-11         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-11      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-30      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-23        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-31      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-23        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-24        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-32      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-24        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-12         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-12      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-33      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-25        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-34      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-25        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-26        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-35      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-26        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-13         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-13      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-36      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-27        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-37      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-27        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-28        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-38      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-28        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-14         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-14      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-39      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-29        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-40      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-29        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-30        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-41      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-30        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-15         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-15      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-42      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-31        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-43      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-31        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-32        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-44      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-32        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-16         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-16      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-45      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-33        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-46      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-33        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-34        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-47      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-34        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-17         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-17      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-48      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-35        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-49      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-35        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-36        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-50      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-36        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-18         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-18      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-51      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-37        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-52      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-37        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-38        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-53      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-38        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-19         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-19      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-54      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-39        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-55      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-39        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-40        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-56      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-40        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-20         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-20      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
  BatchNorm2D-57      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     Conv2D-41        [[1, 192, 2, 2]]      [1, 192, 2, 2]        331,776    
  BatchNorm2D-58      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-41        [[1, 192, 2, 2]]      [1, 192, 2, 2]        332,544    
     Conv2D-42        [[1, 192, 2, 2]]      [1, 192, 2, 2]        36,864     
  BatchNorm2D-59      [[1, 192, 2, 2]]      [1, 192, 2, 2]          768      
     ConvBN-42        [[1, 192, 2, 2]]      [1, 192, 2, 2]        37,632     
      ReLU-21         [[1, 192, 2, 2]]      [1, 192, 2, 2]           0       
  RepVGGBlock-21      [[1, 192, 2, 2]]      [1, 192, 2, 2]        370,944    
     Conv2D-43        [[1, 192, 2, 2]]     [1, 1280, 1, 1]       2,211,840   
  BatchNorm2D-60     [[1, 1280, 1, 1]]     [1, 1280, 1, 1]         5,120     
     ConvBN-43        [[1, 192, 2, 2]]     [1, 1280, 1, 1]       2,216,960   
     Conv2D-44        [[1, 192, 2, 2]]     [1, 1280, 1, 1]        245,760    
  BatchNorm2D-61     [[1, 1280, 1, 1]]     [1, 1280, 1, 1]         5,120     
     ConvBN-44        [[1, 192, 2, 2]]     [1, 1280, 1, 1]        250,880    
      ReLU-22        [[1, 1280, 1, 1]]     [1, 1280, 1, 1]           0       
  RepVGGBlock-22      [[1, 192, 2, 2]]     [1, 1280, 1, 1]       2,467,840   
AdaptiveAvgPool2D-1  [[1, 1280, 1, 1]]     [1, 1280, 1, 1]           0       
     Linear-1           [[1, 1280]]            [1, 10]            12,810     
===============================================================================
Total params: 23,556,330
Trainable params: 23,509,034
Non-trainable params: 47,296
-------------------------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 2.38
Params size (MB): 89.86
Estimated Total Size (MB): 92.25
-------------------------------------------------------------------------------/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:298: UserWarning: <ipython-input-2-bd09d46e5add>:53 The behavior of expression A + B has been unified with elementwise_add(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use elementwise_add(X, Y, axis=0) instead of A + B. This transitional warning will be dropped in the future. op_type, op_type, EXPRESSION_MAP[method_name])) /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/math_op_patch.py:298: UserWarning: /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/metric/metrics.py:270 The behavior of expression A == B has been unified with equal(X, Y, axis=-1) from Paddle 2.0. If your code works well in the older versions but crashes in this version, try to use equal(X, Y, axis=0) instead of A == B. This transitional warning will be dropped in the future. op_type, op_type, EXPRESSION_MAP[method_name]))
# 配置数据预处理# 通道转置 + 归一化transform = Compose([Transpose(), Normalize(mean=127.5, std=127.5)])# 加载数据集train_dataset = Cifar10(mode='train', transform=transform) val_dataset = Cifar10(mode='test', transform=transform)
Cache file /home/aistudio/.cache/paddle/dataset/cifar/cifar-10-python.tar.gz not found, downloading https://dataset.bj.bcebos.com/cifar/cifar-10-python.tar.gz Begin to download Download finished
        
# 配置 VisualDL 可视化回调函数# 训练启动后可通过右侧可视化查看训练数据vdl_callback = paddle.callbacks.VisualDL(log_dir='log')# 模型训练# train_data 训练数据# eval_data 测试数据# batch_size 数据批大小# epochs 训练轮次# eval_freq 评测间隔# log_freq log 间隔# save_dir 保存目录# verbose log 方式# drop_last 是否丢弃末尾数据# num_workers 读取线程# callbacks 回调函数model.fit(
    train_data=train_dataset, 
    eval_data=val_dataset, 
    batch_size=256, 
    epochs=2, 
    eval_freq=1, 
    log_freq=20, 
    save_dir='save_models', 
    save_freq=1, 
    verbose=1, 
    drop_last=False, 
    shuffle=True,
    num_workers=8, 
    callbacks=vdl_callback
)The loss value printed in the log is the current step, and the metric is the average value of previous step. Epoch 1/2
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working return (isinstance(seq, collections.Sequence) and
step 196/196 [==============================] - loss: 1.0396 - acc_top1: 0.6414 - acc_top5: 0.9535 - 51ms/step save checkpoint at /home/aistudio/save_models/0 Eval begin... The loss value printed in the log is the current batch, and the metric is the average value of previous step. step 40/40 [==============================] - loss: 2.1800 - acc_top1: 0.4489 - acc_top5: 0.9243 - 34ms/step Eval samples: 10000 Epoch 2/2 step 196/196 [==============================] - loss: 0.5899 - acc_top1: 0.7437 - acc_top5: 0.9820 - 48ms/step save checkpoint at /home/aistudio/save_models/1 Eval begin... The loss value printed in the log is the current batch, and the metric is the average value of previous step. step 40/40 [==============================] - loss: 2.4723 - acc_top1: 0.4512 - acc_top5: 0.9275 - 37ms/step Eval samples: 10000 save checkpoint at /home/aistudio/save_models/final
# 标签列表classes = ['飞机', '汽车', '鸟', '猫', '鹿', '狗', '青蛙', '马', '船', '卡车']# 预测图像路径test_img_path = 'cat.jpg'# 显示预测图像display(Image(test_img_path))# 读取测试图像test_img = cv2.imread(test_img_path)# 数据预处理# 缩放 + 通道转置 + 归一化 + 新增维度test_img = cv2.resize(test_img, (32, 32))
test_img = transform(test_img)
test_img = test_img[np.newaxis, ...]# 模型预测result = model.predict_batch(test_img)# 结果后处理# 取置信度最大的标签下标 + 标签转换index = np.argmax(result)
predict_label = classes[index]# 打印结果print('该图片的预测结果为:%s' % predict_label)<IPython.core.display.Image object>
该图片的预测结果为:猫
以上就是高层 API 实现 RepVGG 模型微调的详细内容,更多请关注php中文网其它相关文章!
                        
                        每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
                Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号