本项目是ai达人特训营的选题,目测该选题来自这个比赛:房产行业聊天问答匹配
背景: 贝壳找房是以技术驱动的品质居住服务平台,“有尊严的服务者、更美好的居住”,是贝壳的使命。在帮助客户实现更美好的居住过程中,客户会和服务者(房产经纪人)反复深入交流对居住的要求,这个交流发生在贝壳APP上的IM中。
IM交流是双方建立信任的必要环节,客户需要在这个场景下经常向服务者咨询许多问题,而服务者是否为客户提供了感受良好、解答专业的服务就很重要,贝壳平台对此非常关注。因此,需要准确找出服务者是否回答了客户的问题,并进一步判断回答得是否准确得体,随着贝壳平台规模扩大,需要AI参与这个过程。
任务:
赛题任务:给定IM交流片段,片段包含一个客户问题以及随后的经纪人若干IM消息,从这些随后的经纪人消息中找出一个是对客户问题的回答。
任务要点:
结果:
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜
        
说明:比赛已经比较久了,现在只能获取长期公开赛的评分排名,而且没什么人,不过用来学习文本匹配思路还是不错的。
一共有三份数据:训练集、测试集和提交示例。
训练集包含客户问题文件和经纪人回复两个文件,涉及6000段对话(有标签答案)。
测试集包含客户问题文件和经纪人回复两个文件,涉及14000段对话(无标签答案)。
解压训练集和测试集
!unzip data/data144231/train.zip -d ./data && unzip data/data144231/test.zip -d ./data
Archive: data/data144231/train.zip creating: ./data/train/ inflating: ./data/train/train.query.tsv inflating: ./data/train/train.reply.tsv Archive: data/data144231/test.zip creating: ./data/test/ inflating: ./data/test/test.query.tsv inflating: ./data/test/test.reply.tsv
查看数据示例
import pandas as pd
train_query = pd.read_csv("data/train/train.query.tsv", sep='\t', header=None)
train_query.columns = ['query_id', 'sentence']# query 文件有 2 列,分别是问题 Id 和客户问题,同一对话 Id 只有一个问题,已脱敏print(train_query.head())
train_reply = pd.read_csv("data/train/train.reply.tsv", sep='\t', header=None)
train_reply.columns = ['query_id', 'reply_id', 'sentence', 'label']# reply 文件有 4 列,分别是:# 对话id,对应客户问题文件中的对话 id # 经纪人回复 Id,Id 对应真实回复顺序# 经纪人回复内容,已脱敏# 经纪人回复标签,1 表示此回复是针对客户问题的回答,0 相反print(train_reply.head())# 训练集文件结构与测试集相同,只不过 reply 文件没有回复标签test_query = pd.read_csv("data/test/test.query.tsv", sep='\t', header=None, encoding='gb18030')
test_query.columns = ['query_id', 'sentence']print(test_query.head())
test_reply = pd.read_csv("data/test/test.reply.tsv", sep='\t', header=None, encoding='gb18030')
test_reply.columns = ['query_id', 'reply_id', 'sentence']print(test_reply.head())query_id sentence 0 0 采荷一小是分校吧 1 1 毛坯吗? 2 2 你们的佣金费大约是多少和契税是多少。 3 3 靠近川沙路嘛? 4 4 这套房源价格还有优惠空间吗? query_id reply_id sentence label 0 0 0 杭州市采荷第一小学钱江苑校区,杭州市钱江新城实验学校。 1 1 0 1 是的 0 2 0 2 这是5楼 0 3 1 0 因为公积金贷款贷的少 0 4 1 1 是呢 0 query_id sentence 0 0 东区西区?什么时候下证? 1 1 小学哪个 2 2 看哪个? 3 3 面积多少,什么户型 4 4 什么时候能够看房呢? query_id reply_id sentence 0 0 0 我在给你发套 1 0 1 您看下我发的这几套 2 0 2 这两套也是金源花园的 3 0 3 价钱低 4 0 4 便宜的房子,一般都是顶楼
原文:
首先对原始的MLM任务进行改进,引入了Entity-level masking和Phrase-level masking,帮助模型学习更多的词汇短语知识,这个任务也成为了后续中文预训练模型的标配:
        
同时引入了DLM(Dialogue Language Model)对NSP任务进行了优化,在预测Mask token的同时判断输入的多轮对话(QRQ、QRR、QQR三种模式)是否真实。
        
首先是框架上的闭环化,把各种下游任务持续加入模型中提升效果:
        
其次引入更多预训练任务,细节参见原论文。
3.0版本首先延续了之前有效的预训练任务。
其次3.0版本提出了海量无监督文本与大规模知识图谱的平行预训练方法 (Universal Knowledge-Text Prediction)。将5千万知识图谱三元组与4TB大规模语料中相关的文本组成pair,同时输入到预训练模型之中进行联合掩码训练:
        
语料库 4TB,我的天!!!
结构上,ERNIE 3.0框架分为两层。第一层是通用语义表示网络,该网络学习数据中的基础和通用的知识。第二层是任务语义表示网络,该网络基于通用语义表示,学习任务相关的知识。在学习过程中,任务语义表示网络只学习对应类别的预训练任务,而通用语义表示网络会学习所有的预训练任务。
        
本项目使用 3.0 版本预训练模型。
        
        
在思路 2 的基础上,还可以把 [CLS] 对应的输出拿出来,预测所有候选 reply 中是否存在可以匹配的回答。
本项目采用思路 1 作为 baseline 。
首先安装最新版本的 paddlenlp
!pip install paddlenlp --upgrade
上述安装过程可能会报错,大概是parl包的版本依赖问题,对于本项目来说无伤大雅。
训练、测试代码都写在 query_reply_pair.py 文件中,有详细注释。
注意:
运行脚本:
!python query_reply_pair.py
[2022-06-22 10:04:10,523] [    INFO] - using `logging_steps` to initialize `eval_steps` to 100[2022-06-22 10:04:10,523] [    INFO] - ============================================================[2022-06-22 10:04:10,523] [    INFO] -      Model Configuration Arguments      
[2022-06-22 10:04:10,523] [    INFO] - paddle commit id              :590b4dbcdd989324089ce43c22ef151c746c92a3[2022-06-22 10:04:10,523] [    INFO] - export_model_dir              :None[2022-06-22 10:04:10,523] [    INFO] - model_name_or_path            :ernie-3.0-medium-zh[2022-06-22 10:04:10,524] [    INFO] - 
[2022-06-22 10:04:10,524] [    INFO] - ============================================================[2022-06-22 10:04:10,524] [    INFO] -       Data Configuration Arguments      
[2022-06-22 10:04:10,524] [    INFO] - paddle commit id              :590b4dbcdd989324089ce43c22ef151c746c92a3[2022-06-22 10:04:10,524] [    INFO] - max_seq_length                :128[2022-06-22 10:04:10,524] [    INFO] - test_query_path               :data/test/test.query.tsv[2022-06-22 10:04:10,524] [    INFO] - test_reply_path               :data/test/test.reply.tsv[2022-06-22 10:04:10,524] [    INFO] - train_query_path              :data/train/train.query.tsv[2022-06-22 10:04:10,524] [    INFO] - train_reply_path              :data/train/train.reply.tsv[2022-06-22 10:04:10,524] [    INFO] - 
raw train dataset example: {'query': '东区西区?什么时候下证?', 'reply': '我在给你发套'}.[2022-06-22 10:04:11,911] [    INFO] - We are using <class 'paddlenlp.transformers.ernie.tokenizer.ErnieTokenizer'> to load 'ernie-3.0-medium-zh'.[2022-06-22 10:04:11,911] [    INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-3.0-medium-zh/ernie_3.0_medium_zh_vocab.txt[2022-06-22 10:04:11,934] [    INFO] - We are using <class 'paddlenlp.transformers.ernie.modeling.ErnieForSequenceClassification'> to load 'ernie-3.0-medium-zh'.[2022-06-22 10:04:11,934] [    INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-3.0-medium-zh/ernie_3.0_medium_zh.pdparams
W0622 10:04:11.936193  1093 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0622 10:04:11.939395  1093 gpu_context.cc:306] device: 0, cuDNN Version: 7.6.
feature train dataset example: {'input_ids': [1, 481, 1535, 7, 96, 10, 59, 225, 940, 2, 1852, 404, 99, 481, 1535, 131, 7, 96, 18, 958, 409, 2485, 225, 121, 4, 1852, 404, 99, 958, 409, 102, 257, 79, 412, 18, 225, 12043, 2], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], 'label': 1}.[2022-06-22 10:04:16,960] [    INFO] - ============================================================[2022-06-22 10:04:16,960] [    INFO] -     Training Configuration Arguments    
[2022-06-22 10:04:16,960] [    INFO] - paddle commit id              :590b4dbcdd989324089ce43c22ef151c746c92a3[2022-06-22 10:04:16,961] [    INFO] - _no_sync_in_gradient_accumulation:True[2022-06-22 10:04:16,961] [    INFO] - adam_beta1                    :0.9[2022-06-22 10:04:16,961] [    INFO] - adam_beta2                    :0.999[2022-06-22 10:04:16,961] [    INFO] - adam_epsilon                  :1e-08[2022-06-22 10:04:16,961] [    INFO] - current_device                :gpu:0[2022-06-22 10:04:16,961] [    INFO] - dataloader_drop_last          :False[2022-06-22 10:04:16,961] [    INFO] - dataloader_num_workers        :4[2022-06-22 10:04:16,961] [    INFO] - device                        :gpu[2022-06-22 10:04:16,961] [    INFO] - disable_tqdm                  :False[2022-06-22 10:04:16,961] [    INFO] - do_eval                       :True[2022-06-22 10:04:16,961] [    INFO] - do_export                     :False[2022-06-22 10:04:16,961] [    INFO] - do_predict                    :True[2022-06-22 10:04:16,961] [    INFO] - do_train                      :True[2022-06-22 10:04:16,961] [    INFO] - eval_batch_size               :128[2022-06-22 10:04:16,961] [    INFO] - eval_steps                    :100[2022-06-22 10:04:16,961] [    INFO] - evaluation_strategy           :IntervalStrategy.STEPS[2022-06-22 10:04:16,961] [    INFO] - fp16                          :False[2022-06-22 10:04:16,961] [    INFO] - fp16_opt_level                :O1[2022-06-22 10:04:16,961] [    INFO] - gradient_accumulation_steps   :1[2022-06-22 10:04:16,961] [    INFO] - greater_is_better             :True[2022-06-22 10:04:16,962] [    INFO] - ignore_data_skip              :False[2022-06-22 10:04:16,962] [    INFO] - label_names                   :None[2022-06-22 10:04:16,962] [    INFO] - learning_rate                 :5e-05[2022-06-22 10:04:16,962] [    INFO] - load_best_model_at_end        :True[2022-06-22 10:04:16,962] [    INFO] - local_process_index           :0[2022-06-22 10:04:16,962] [    INFO] - local_rank                    :-1[2022-06-22 10:04:16,962] [    INFO] - log_level                     :-1[2022-06-22 10:04:16,962] [    INFO] - log_level_replica             :-1[2022-06-22 10:04:16,962] [    INFO] - log_on_each_node              :True[2022-06-22 10:04:16,962] [    INFO] - logging_dir                   :work/query_reply_pair/runs/Jun22_10-04-10_jupyter-532817-4195533[2022-06-22 10:04:16,962] [    INFO] - logging_first_step            :False[2022-06-22 10:04:16,962] [    INFO] - logging_steps                 :100[2022-06-22 10:04:16,962] [    INFO] - logging_strategy              :IntervalStrategy.STEPS[2022-06-22 10:04:16,962] [    INFO] - lr_scheduler_type             :SchedulerType.LINEAR[2022-06-22 10:04:16,962] [    INFO] - max_grad_norm                 :1.0[2022-06-22 10:04:16,962] [    INFO] - max_steps                     :-1[2022-06-22 10:04:16,962] [    INFO] - metric_for_best_model         :accuracy[2022-06-22 10:04:16,962] [    INFO] - minimum_eval_times            :None[2022-06-22 10:04:16,962] [    INFO] - no_cuda                       :False[2022-06-22 10:04:16,962] [    INFO] - num_train_epochs              :0.5[2022-06-22 10:04:16,962] [    INFO] - optim                         :OptimizerNames.ADAMW[2022-06-22 10:04:16,962] [    INFO] - output_dir                    :work/query_reply_pair/test[2022-06-22 10:04:16,962] [    INFO] - overwrite_output_dir          :False[2022-06-22 10:04:16,962] [    INFO] - past_index                    :-1[2022-06-22 10:04:16,962] [    INFO] - per_device_eval_batch_size    :128[2022-06-22 10:04:16,962] [    INFO] - per_device_train_batch_size   :128[2022-06-22 10:04:16,963] [    INFO] - prediction_loss_only          :False[2022-06-22 10:04:16,963] [    INFO] - process_index                 :0[2022-06-22 10:04:16,963] [    INFO] - remove_unused_columns         :True[2022-06-22 10:04:16,963] [    INFO] - report_to                     :['visualdl'][2022-06-22 10:04:16,963] [    INFO] - resume_from_checkpoint        :None[2022-06-22 10:04:16,963] [    INFO] - run_name                      :test[2022-06-22 10:04:16,963] [    INFO] - save_on_each_node             :False[2022-06-22 10:04:16,963] [    INFO] - save_steps                    :100[2022-06-22 10:04:16,963] [    INFO] - save_strategy                 :IntervalStrategy.STEPS[2022-06-22 10:04:16,963] [    INFO] - save_total_limit              :2[2022-06-22 10:04:16,963] [    INFO] - scale_loss                    :32768[2022-06-22 10:04:16,963] [    INFO] - seed                          :42[2022-06-22 10:04:16,963] [    INFO] - should_log                    :True[2022-06-22 10:04:16,963] [    INFO] - should_save                   :True[2022-06-22 10:04:16,963] [    INFO] - train_batch_size              :128[2022-06-22 10:04:16,963] [    INFO] - warmup_ratio                  :0.0[2022-06-22 10:04:16,963] [    INFO] - warmup_steps                  :0[2022-06-22 10:04:16,963] [    INFO] - weight_decay                  :0.0[2022-06-22 10:04:16,963] [    INFO] - world_size                    :1[2022-06-22 10:04:16,963] [    INFO] - 
[2022-06-22 10:04:16,964] [    INFO] - ***** Running training *****[2022-06-22 10:04:16,965] [    INFO] -   Num examples = 17268[2022-06-22 10:04:16,965] [    INFO] -   Num Epochs = 1[2022-06-22 10:04:16,965] [    INFO] -   Instantaneous batch size per device = 128[2022-06-22 10:04:16,965] [    INFO] -   Total train batch size (w. parallel, distributed & accumulation) = 128[2022-06-22 10:04:16,965] [    INFO] -   Gradient Accumulation steps = 1[2022-06-22 10:04:16,965] [    INFO] -   Total optimization steps = 67.5[2022-06-22 10:04:16,965] [    INFO] -   Total num train samples = 8634.0
100%|███████████████████████████████████████████| 67/67 [00:17<00:00,  4.40it/s][2022-06-22 10:04:34,326] [    INFO] - 
Training completed. 
{'train_runtime': 17.4487, 'train_samples_per_second': 494.821, 'train_steps_per_second': 3.84, 'train_loss': 0.352832708785783, 'epoch': 0.4963}
100%|███████████████████████████████████████████| 67/67 [00:17<00:00,  3.84it/s][2022-06-22 10:04:34,416] [    INFO] - Saving model checkpoint to work/query_reply_pair/test[2022-06-22 10:04:36,894] [    INFO] - tokenizer config file saved in work/query_reply_pair/test/tokenizer_config.json[2022-06-22 10:04:36,895] [    INFO] - Special tokens file saved in work/query_reply_pair/test/special_tokens_map.json
***** train metrics *****
  epoch                    =     0.4963
  train_loss               =     0.3528
  train_runtime            = 0:00:17.44
  train_samples_per_second =    494.821
  train_steps_per_second   =       3.84[2022-06-22 10:04:36,898] [    INFO] - ***** Running Evaluation *****[2022-06-22 10:04:36,898] [    INFO] -   Num examples = 4317[2022-06-22 10:04:36,898] [    INFO] -   Pre device batch size = 128[2022-06-22 10:04:36,898] [    INFO] -   Total Batch size = 128[2022-06-22 10:04:36,898] [    INFO] -   Total prediction steps = 34
100%|███████████████████████████████████████████| 34/34 [00:02<00:00, 12.31it/s]
***** eval metrics *****
  epoch                   =     0.4963
  eval_accuracy           =     0.8826
  eval_loss               =      0.283
  eval_runtime            = 0:00:03.21
  eval_samples_per_second =   1344.038
  eval_steps_per_second   =     10.585[2022-06-22 10:04:40,112] [    INFO] - ***** Running Prediction *****[2022-06-22 10:04:40,112] [    INFO] -   Num examples = 53757[2022-06-22 10:04:40,112] [    INFO] -   Pre device batch size = 128[2022-06-22 10:04:40,112] [    INFO] -   Total Batch size = 128[2022-06-22 10:04:40,112] [    INFO] -   Total prediction steps = 420
100%|█████████████████████████████████████████| 420/420 [00:51<00:00, 11.37it/s]***** test metrics *****
  test_runtime            = 0:00:52.06
  test_samples_per_second =   1032.496
  test_steps_per_second   =      8.067
100%|█████████████████████████████████████████| 420/420 [00:52<00:00,  7.95it/s]训练结果可视化:
点击页面最左侧一列菜单栏中的 数据模型可视化 ,添加 logdir 然后启动服务,就可以看到训练过程的 loss 曲线等信息。
log 文件会保存在类似 work/query_reply_pair/runs/Jun22_10-01-49_jupyter-532817-4195533 这样的路径下面。
由于上面训练过程只跑了 0.5 个 epoch,曲线基本只有一个点,这里就不进行展示了。
测试集预测结果保存在 work/query_reply_pair/test/test_labels.tsv 文件中,你可以直接点开看一下结果。
import pandas as pd file_path = "work/query_reply_pair/test/test_labels.tsv"df = pd.read_csv(file_path, sep='\t') df.head()
query reply label 0 东区西区?什么时候下证? 我在给你发套 0 1 东区西区?什么时候下证? 您看下我发的这几套 0 2 东区西区?什么时候下证? 这两套也是金源花园的 0 3 东区西区?什么时候下证? 价钱低 0 4 东区西区?什么时候下证? 便宜的房子,一般都是顶楼 0
生成竞赛提交文件:
import pandas as pd sample_submit_path = "data/data144231/sample_submission.tsv"submit_path = "submit.tsv"submit = pd.read_csv(sample_submit_path, sep='\t', header=None) submit.columns = ['query_id', 'reply_id', 'label'] test_labels = pd.read_csv(file_path, sep='\t') label = test_labels['label'] submit['label'] = label submit.to_csv(submit_path, sep='\t', header=None, index=None)
根目录下 submit.tsv 文件就可以拿去提交啦,提交大概 0.75+ 的分数 (num_train_epochs = 5.0 的情况下)。
以上就是【AI达人特训营】PaddleNLP实现聊天问答匹配的详细内容,更多请关注php中文网其它相关文章!
                        
                        每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
                Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号