【AI达人特训营】基于全卷积神经网络的图像分类复现

P粉084495128
发布: 2025-07-30 11:25:11
原创
1035人浏览过
本文将ResNet50的全连接层替换为全卷积层构建ResNet50-FCN,在CIFAR-10数据集上训练,并与原始ResNet50对比。两者采用相同参数(100轮、lr=0.01等),结果显示ResNet50-FCN准确率更高,上升过程更平滑,抖动更小,验证了全卷积层在保留空间信息等方面的优势。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【ai达人特训营】基于全卷积神经网络的图像分类复现 - php中文网

ResNet50-FCN

论文地址:https://arxiv.org/abs/1411.4038

FCN:Fully Convolutional Networks

全卷积模型:本项目将CNN模式后面的全连接层换成卷积层,所以整个网络都是卷积层。其最后输出的是一张已经标记好的热图,而不是一个概率值。 通常的CNN网络中,在最后都会有几层全连接网络来融合特征信息,然后再对融合后的特征信息进行softmax分类,如下图所示:

【AI达人特训营】基于全卷积神经网络的图像分类复现 - php中文网        

假设最后一层的feature_map的大小是7x7x512,那么全连接层做的事就是用4096个7x7x512的滤波器去卷积这个最后的feature_map。所以可想而知这个参数量是很大的!!

【AI达人特训营】基于全卷积神经网络的图像分类复现 - php中文网        

但是全卷积网络就简单多了。FCN的做法是将最后的全连接层替换为4096个1x1x512的卷积核,所以最后得出来的就是一个二维的图像,然后再对这个二维图像进行上采样(反卷积),然后再对最后反卷积的图像的每个像素点进行softmax分类。
我们都知道卷积层后的全连接目的是将 卷积输出的二维特征图(feature map)转化成(N×1N×1)一维的一个向量因为传统的卷积神经网络的输出都是分类(一般都是一个概率值),也就是几个类别的概率甚至就是一个类别号,那么全连接层就是高度提纯的特征了,方便交给最后的分类器或者回归。
根据全连接的目的,我们完全可以利用卷积层代替全连接层,在输入端使用 M×MM×M 大小的卷积核将数据“扁平化处理”,在使用 1×11×1 卷积核对数据进行降维操作,最终卷积核的通道数即是我们预测数据的维度。这样在输入端不将数据进行扁平化处理,还可以使得图片保留其空间信息:

【AI达人特训营】基于全卷积神经网络的图像分类复现 - php中文网        

使用全卷积层的优点:

  • 全卷积层能够兼容不同大小的尺寸输入。
  • 与global avg pooling类似,可以大大减少网络参数量

数据集介绍:Cifar10

链接:http://www.cs.toronto.edu/~kriz/cifar.html

【AI达人特训营】基于全卷积神经网络的图像分类复现 - php中文网        

CIFAR-10是一个更接近普适物体的彩色图像数据集。CIFAR-10 是由Hinton 的学生Alex Krizhevsky 和Ilya Sutskever 整理的一个用于识别普适物体的小型数据集。一共包含10 个类别的RGB彩色图片:飞机(airplane)、汽车(automobile)、鸟类(bird)、猫(cat)、鹿(deer)、狗(dog)、蛙类(frog)、马(horse)、船(ship)和卡车(truck).

每个图片的尺寸为32×3232×32,每个类别有6000个图像,数据集中一共有50000张训练图片和10000张测试图片。

神卷标书
神卷标书

神卷标书,专注于AI智能标书制作、管理与咨询服务,提供高效、专业的招投标解决方案。支持一站式标书生成、模板下载,助力企业轻松投标,提升中标率。

神卷标书 39
查看详情 神卷标书

代码复现

1.引入依赖包

In [1]
from __future__ import divisionfrom __future__ import print_functionimport paddleimport paddle.nn as nnfrom paddle.nn import functional as Ffrom paddle.utils.download import get_weights_path_from_urlimport pickleimport numpy as npfrom paddle import callbacksfrom paddle.vision.transforms import (
    ToTensor, RandomHorizontalFlip, RandomResizedCrop, SaturationTransform, Compose,
    HueTransform, BrightnessTransform, ContrastTransform, RandomCrop, Normalize, RandomRotation, Resize
)from paddle.vision.datasets import Cifar10from paddle.io import DataLoaderfrom paddle.optimizer.lr import CosineAnnealingDecay, MultiStepDecay, LinearWarmupimport random
登录后复制
   

2.定义ResNet50-FCN网络

本代码参考Paddleclas实现,代码中将分类类别设定为100类

In [2]
__all__ = []
model_urls = {    'resnet18': ('https://paddle-hapi.bj.bcebos.com/models/resnet18.pdparams',                 'cf548f46534aa3560945be4b95cd11c4'),    'resnet34': ('https://paddle-hapi.bj.bcebos.com/models/resnet34.pdparams',                 '8d2275cf8706028345f78ac0e1d31969'),    'resnet50': ('https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams',                 'ca6f485ee1ab0492d38f323885b0ad80'),    'resnet101': ('https://paddle-hapi.bj.bcebos.com/models/resnet101.pdparams',                  '02f35f034ca3858e1e54d4036443c92d'),    'resnet152': ('https://paddle-hapi.bj.bcebos.com/models/resnet152.pdparams',                  '7ad16a2f1e7333859ff986138630fd7a'),
}class BottleneckBlock(nn.Layer):

    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 downsample=None,
                 groups=1,
                 base_width=64,
                 dilation=1,
                 norm_layer=None):
        super(BottleneckBlock, self).__init__()        if norm_layer is None:
            norm_layer = nn.BatchNorm2D
        width = int(planes * (base_width / 64.)) * groups
        self.width = width
        self.conv1 = nn.Conv2D(inplanes, width, 1, bias_attr=False)
        self.bn1 = norm_layer(width)
        self.conv2 = nn.Conv2D(
            width,
            width,            3,
            padding=dilation,
            stride=stride,
            groups=groups,
            dilation=dilation,
            bias_attr=False)
        self.bn2 = norm_layer(width)
        self.conv3 = nn.Conv2D(
            width, planes * self.expansion, 1, bias_attr=False)
        self.width_2 = planes * self.expansion
        self.bn3 = norm_layer(planes * self.expansion)
        self.relu = nn.ReLU()
        self.downsample = downsample
        self.stride = stride    def forward(self, x):
        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)
        out = self.conv3(out)
        out = self.bn3(out)        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        out = self.relu(out)        return outclass ResNet(nn.Layer):
    """ResNet model from
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_

    Args:
        Block (BasicBlock|BottleneckBlock): block module of model.
        depth (int): layers of resnet, default: 50.
        num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer
                            will not be defined. Default: 1000.
        with_pool (bool): use pool before the last fc layer or not. Default: True.

    Examples:
        .. code-block:: python

            from paddle.vision.models import ResNet
            from paddle.vision.models.resnet import BottleneckBlock, BasicBlock

            resnet50 = ResNet(BottleneckBlock, 50)

            resnet18 = ResNet(BasicBlock, 18)

    """

    def __init__(self, block, depth, num_classes=10, with_pool=False):
        super(ResNet, self).__init__()
        layer_cfg = {            18: [2, 2, 2, 2],            34: [3, 4, 6, 3],            50: [3, 4, 6, 3],            101: [3, 4, 23, 3],            152: [3, 8, 36, 3]
        }
        layers = layer_cfg[depth]
        self.num_classes = num_classes
        self.with_pool = with_pool
        self._norm_layer = nn.BatchNorm2D

        self.inplanes = 64
        self.dilation = 1

        self.conv1 = nn.Conv2D(            3,
            self.inplanes,
            kernel_size=7,
            stride=2,
            padding=3,
            bias_attr=False)
        self.bn1 = self._norm_layer(self.inplanes)
        self.relu = nn.ReLU()        # self.maxpool = nn.MaxPool2D(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)        if with_pool:
            self.avgpool = nn.AdaptiveAvgPool2D((1, 1))        if num_classes > 0:
            self.fc = nn.Linear(512 * block.expansion, num_classes)
        self.final_conv = nn.Conv2D(512 * block.expansion, 1024, 2)
        self.final_conv2 = nn.Conv2D(1024, 10, 1)    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
        downsample = None
        previous_dilation = self.dilation        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2D(
                    self.inplanes,
                    planes * block.expansion,                    1,
                    stride=stride,
                    bias_attr=False),
                norm_layer(planes * block.expansion), )

        layers = []
        layers.append(
            block(self.inplanes, planes, stride, downsample, 1, 64,
                  previous_dilation, norm_layer))
        self.inplanes = planes * block.expansion        for _ in range(1, blocks):
            layers.append(block(self.inplanes, planes, norm_layer=norm_layer))        return nn.Sequential(*layers)    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)        # x = self.maxpool(x)
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)        ### 
        # 更改为全卷积层 
        ###

        # if self.with_pool:
        #     x = self.avgpool(x)

        # if self.num_classes > 0:
        #     x = paddle.flatten(x, 1)
        #     x = self.fc(x)

        ### 
        # 全卷积层 
        ###
        
        x = self.final_conv(x)
        x = self.final_conv2(x)
        x = x.reshape([-1, 10], -1)        return xdef _resnet(arch, Block, depth, pretrained, **kwargs):
    model = ResNet(Block, depth, **kwargs)    if pretrained:        assert arch in model_urls, "{} model do not have a pretrained model now, you should set pretrained=False".format(
            arch)
        weight_path = get_weights_path_from_url(model_urls[arch][0],
                                                model_urls[arch][1])

        param = paddle.load(weight_path)
        model.set_dict(param)    return modeldef resnet50(pretrained=False, **kwargs):
    """ResNet 50-layer model

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet

    Examples:
        .. code-block:: python

            from paddle.vision.models import resnet50

            # build model
            model = resnet50()

            # build model and load imagenet pretrained weight
            # model = resnet50(pretrained=True)
    """
    return _resnet('resnet50', BottleneckBlock, 50, pretrained, **kwargs)
登录后复制
   
In [3]
net = resnet50()
paddle.summary(net, (1,3,32,32))
登录后复制
       
W0616 14:52:04.385969  2132 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0616 14:52:04.390283  2132 gpu_context.cc:306] device: 0, cuDNN Version: 7.6.
登录后复制
       
------------------------------------------------------------------------------
   Layer (type)        Input Shape          Output Shape         Param #    
==============================================================================
     Conv2D-1        [[1, 3, 32, 32]]     [1, 64, 16, 16]         9,408     
  BatchNorm2D-1     [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
      ReLU-1        [[1, 64, 16, 16]]     [1, 64, 16, 16]           0       
     Conv2D-3       [[1, 64, 16, 16]]     [1, 64, 16, 16]         4,096     
  BatchNorm2D-3     [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
      ReLU-2        [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
     Conv2D-4       [[1, 64, 16, 16]]     [1, 64, 16, 16]        36,864     
  BatchNorm2D-4     [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
     Conv2D-5       [[1, 64, 16, 16]]     [1, 256, 16, 16]       16,384     
  BatchNorm2D-5     [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
     Conv2D-2       [[1, 64, 16, 16]]     [1, 256, 16, 16]       16,384     
  BatchNorm2D-2     [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
BottleneckBlock-1   [[1, 64, 16, 16]]     [1, 256, 16, 16]          0       
     Conv2D-6       [[1, 256, 16, 16]]    [1, 64, 16, 16]        16,384     
  BatchNorm2D-6     [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
      ReLU-3        [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
     Conv2D-7       [[1, 64, 16, 16]]     [1, 64, 16, 16]        36,864     
  BatchNorm2D-7     [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
     Conv2D-8       [[1, 64, 16, 16]]     [1, 256, 16, 16]       16,384     
  BatchNorm2D-8     [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
BottleneckBlock-2   [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
     Conv2D-9       [[1, 256, 16, 16]]    [1, 64, 16, 16]        16,384     
  BatchNorm2D-9     [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
      ReLU-4        [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
    Conv2D-10       [[1, 64, 16, 16]]     [1, 64, 16, 16]        36,864     
  BatchNorm2D-10    [[1, 64, 16, 16]]     [1, 64, 16, 16]          256      
    Conv2D-11       [[1, 64, 16, 16]]     [1, 256, 16, 16]       16,384     
  BatchNorm2D-11    [[1, 256, 16, 16]]    [1, 256, 16, 16]        1,024     
BottleneckBlock-3   [[1, 256, 16, 16]]    [1, 256, 16, 16]          0       
    Conv2D-13       [[1, 256, 16, 16]]    [1, 128, 16, 16]       32,768     
  BatchNorm2D-13    [[1, 128, 16, 16]]    [1, 128, 16, 16]         512      
      ReLU-5         [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-14       [[1, 128, 16, 16]]     [1, 128, 8, 8]        147,456    
  BatchNorm2D-14     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
    Conv2D-15        [[1, 128, 8, 8]]      [1, 512, 8, 8]        65,536     
  BatchNorm2D-15     [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
    Conv2D-12       [[1, 256, 16, 16]]     [1, 512, 8, 8]        131,072    
  BatchNorm2D-12     [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
BottleneckBlock-4   [[1, 256, 16, 16]]     [1, 512, 8, 8]           0       
    Conv2D-16        [[1, 512, 8, 8]]      [1, 128, 8, 8]        65,536     
  BatchNorm2D-16     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
      ReLU-6         [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-17        [[1, 128, 8, 8]]      [1, 128, 8, 8]        147,456    
  BatchNorm2D-17     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
    Conv2D-18        [[1, 128, 8, 8]]      [1, 512, 8, 8]        65,536     
  BatchNorm2D-18     [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
BottleneckBlock-5    [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-19        [[1, 512, 8, 8]]      [1, 128, 8, 8]        65,536     
  BatchNorm2D-19     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
      ReLU-7         [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-20        [[1, 128, 8, 8]]      [1, 128, 8, 8]        147,456    
  BatchNorm2D-20     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
    Conv2D-21        [[1, 128, 8, 8]]      [1, 512, 8, 8]        65,536     
  BatchNorm2D-21     [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
BottleneckBlock-6    [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-22        [[1, 512, 8, 8]]      [1, 128, 8, 8]        65,536     
  BatchNorm2D-22     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
      ReLU-8         [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-23        [[1, 128, 8, 8]]      [1, 128, 8, 8]        147,456    
  BatchNorm2D-23     [[1, 128, 8, 8]]      [1, 128, 8, 8]          512      
    Conv2D-24        [[1, 128, 8, 8]]      [1, 512, 8, 8]        65,536     
  BatchNorm2D-24     [[1, 512, 8, 8]]      [1, 512, 8, 8]         2,048     
BottleneckBlock-7    [[1, 512, 8, 8]]      [1, 512, 8, 8]           0       
    Conv2D-26        [[1, 512, 8, 8]]      [1, 256, 8, 8]        131,072    
  BatchNorm2D-26     [[1, 256, 8, 8]]      [1, 256, 8, 8]         1,024     
      ReLU-9        [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-27        [[1, 256, 8, 8]]      [1, 256, 4, 4]        589,824    
  BatchNorm2D-27     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
    Conv2D-28        [[1, 256, 4, 4]]     [1, 1024, 4, 4]        262,144    
  BatchNorm2D-28    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
    Conv2D-25        [[1, 512, 8, 8]]     [1, 1024, 4, 4]        524,288    
  BatchNorm2D-25    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
BottleneckBlock-8    [[1, 512, 8, 8]]     [1, 1024, 4, 4]           0       
    Conv2D-29       [[1, 1024, 4, 4]]      [1, 256, 4, 4]        262,144    
  BatchNorm2D-29     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
     ReLU-10        [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-30        [[1, 256, 4, 4]]      [1, 256, 4, 4]        589,824    
  BatchNorm2D-30     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
    Conv2D-31        [[1, 256, 4, 4]]     [1, 1024, 4, 4]        262,144    
  BatchNorm2D-31    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
BottleneckBlock-9   [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-32       [[1, 1024, 4, 4]]      [1, 256, 4, 4]        262,144    
  BatchNorm2D-32     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
     ReLU-11        [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-33        [[1, 256, 4, 4]]      [1, 256, 4, 4]        589,824    
  BatchNorm2D-33     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
    Conv2D-34        [[1, 256, 4, 4]]     [1, 1024, 4, 4]        262,144    
  BatchNorm2D-34    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
BottleneckBlock-10  [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-35       [[1, 1024, 4, 4]]      [1, 256, 4, 4]        262,144    
  BatchNorm2D-35     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
     ReLU-12        [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-36        [[1, 256, 4, 4]]      [1, 256, 4, 4]        589,824    
  BatchNorm2D-36     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
    Conv2D-37        [[1, 256, 4, 4]]     [1, 1024, 4, 4]        262,144    
  BatchNorm2D-37    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
BottleneckBlock-11  [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-38       [[1, 1024, 4, 4]]      [1, 256, 4, 4]        262,144    
  BatchNorm2D-38     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
     ReLU-13        [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-39        [[1, 256, 4, 4]]      [1, 256, 4, 4]        589,824    
  BatchNorm2D-39     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
    Conv2D-40        [[1, 256, 4, 4]]     [1, 1024, 4, 4]        262,144    
  BatchNorm2D-40    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
BottleneckBlock-12  [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-41       [[1, 1024, 4, 4]]      [1, 256, 4, 4]        262,144    
  BatchNorm2D-41     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
     ReLU-14        [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-42        [[1, 256, 4, 4]]      [1, 256, 4, 4]        589,824    
  BatchNorm2D-42     [[1, 256, 4, 4]]      [1, 256, 4, 4]         1,024     
    Conv2D-43        [[1, 256, 4, 4]]     [1, 1024, 4, 4]        262,144    
  BatchNorm2D-43    [[1, 1024, 4, 4]]     [1, 1024, 4, 4]         4,096     
BottleneckBlock-13  [[1, 1024, 4, 4]]     [1, 1024, 4, 4]           0       
    Conv2D-45       [[1, 1024, 4, 4]]      [1, 512, 4, 4]        524,288    
  BatchNorm2D-45     [[1, 512, 4, 4]]      [1, 512, 4, 4]         2,048     
     ReLU-15        [[1, 2048, 2, 2]]     [1, 2048, 2, 2]           0       
    Conv2D-46        [[1, 512, 4, 4]]      [1, 512, 2, 2]       2,359,296   
  BatchNorm2D-46     [[1, 512, 2, 2]]      [1, 512, 2, 2]         2,048     
    Conv2D-47        [[1, 512, 2, 2]]     [1, 2048, 2, 2]       1,048,576   
  BatchNorm2D-47    [[1, 2048, 2, 2]]     [1, 2048, 2, 2]         8,192     
    Conv2D-44       [[1, 1024, 4, 4]]     [1, 2048, 2, 2]       2,097,152   
  BatchNorm2D-44    [[1, 2048, 2, 2]]     [1, 2048, 2, 2]         8,192     
BottleneckBlock-14  [[1, 1024, 4, 4]]     [1, 2048, 2, 2]           0       
    Conv2D-48       [[1, 2048, 2, 2]]      [1, 512, 2, 2]       1,048,576   
  BatchNorm2D-48     [[1, 512, 2, 2]]      [1, 512, 2, 2]         2,048     
     ReLU-16        [[1, 2048, 2, 2]]     [1, 2048, 2, 2]           0       
    Conv2D-49        [[1, 512, 2, 2]]      [1, 512, 2, 2]       2,359,296   
  BatchNorm2D-49     [[1, 512, 2, 2]]      [1, 512, 2, 2]         2,048     
    Conv2D-50        [[1, 512, 2, 2]]     [1, 2048, 2, 2]       1,048,576   
  BatchNorm2D-50    [[1, 2048, 2, 2]]     [1, 2048, 2, 2]         8,192     
BottleneckBlock-15  [[1, 2048, 2, 2]]     [1, 2048, 2, 2]           0       
    Conv2D-51       [[1, 2048, 2, 2]]      [1, 512, 2, 2]       1,048,576   
  BatchNorm2D-51     [[1, 512, 2, 2]]      [1, 512, 2, 2]         2,048     
     ReLU-17        [[1, 2048, 2, 2]]     [1, 2048, 2, 2]           0       
    Conv2D-52        [[1, 512, 2, 2]]      [1, 512, 2, 2]       2,359,296   
  BatchNorm2D-52     [[1, 512, 2, 2]]      [1, 512, 2, 2]         2,048     
    Conv2D-53        [[1, 512, 2, 2]]     [1, 2048, 2, 2]       1,048,576   
  BatchNorm2D-53    [[1, 2048, 2, 2]]     [1, 2048, 2, 2]         8,192     
BottleneckBlock-16  [[1, 2048, 2, 2]]     [1, 2048, 2, 2]           0       
    Conv2D-54       [[1, 2048, 2, 2]]     [1, 1024, 1, 1]       8,389,632   
    Conv2D-55       [[1, 1024, 1, 1]]      [1, 10, 1, 1]         10,250     
==============================================================================
Total params: 31,961,034
Trainable params: 31,854,794
Non-trainable params: 106,240
------------------------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 20.10
Params size (MB): 121.92
Estimated Total Size (MB): 142.04
------------------------------------------------------------------------------
登录后复制
       
{'total_params': 31961034, 'trainable_params': 31854794}
登录后复制
               

3.自定义数据集处理方式

In [4]
class ToArray(object):
    def __call__(self, img):
        img = np.array(img)
        img = np.transpose(img, [2, 0, 1])
        img = img / 255.
        return img.astype('float32')class RandomApply(object):
    def __init__(self, transform, p=0.5):
        super().__init__()
        self.p = p
        self.transform = transform        

    def __call__(self, img):
        if self.p < random.random():            return img
        img = self.transform(img)        return img                                                                                                                    
class LRSchedulerM(callbacks.LRScheduler):                                                                                                           
    def __init__(self, by_step=False, by_epoch=True, warm_up=True):                                                                                                
        super().__init__(by_step, by_epoch)                                                                                                                          
        assert by_step ^ warm_up
        self.warm_up = warm_up        
    def on_epoch_end(self, epoch, logs=None):
        if self.by_epoch and not self.warm_up:            if self.model._optimizer and hasattr(
                self.model._optimizer, '_learning_rate') and isinstance(
                    self.model._optimizer._learning_rate, paddle.optimizer.lr.LRScheduler):                                                                                         
                self.model._optimizer._learning_rate.step()                                                                                          
                                                                                                                                                     
    def on_train_batch_end(self, step, logs=None):                                                                                                   
        if self.by_step or self.warm_up:                                                                                                                             
            if self.model._optimizer and hasattr(
                self.model._optimizer, '_learning_rate') and isinstance(
                    self.model._optimizer._learning_rate, paddle.optimizer.lr.LRScheduler):                                                                                         
                self.model._optimizer._learning_rate.step()            if self.model._optimizer._learning_rate.last_epoch >= self.model._optimizer._learning_rate.warmup_steps:
                self.warm_up = Falsedef _on_train_batch_end(self, step, logs=None):
    logs = logs or {}
    logs['lr'] = self.model._optimizer.get_lr()
    self.train_step += 1
    if self._is_write():
        self._updates(logs, 'train')def _on_train_begin(self, logs=None):
    self.epochs = self.params['epochs']    assert self.epochs
    self.train_metrics = self.params['metrics'] + ['lr']    assert self.train_metrics
    self._is_fit = True
    self.train_step = 0callbacks.VisualDL.on_train_batch_end = _on_train_batch_end
callbacks.VisualDL.on_train_begin = _on_train_begin
登录后复制
   

4.在Cifar10数据集上训练模型

使用Paddle自带的Cifar10数据集API加载

In [ ]
model = paddle.Model(resnet50())# 加载checkpoint# model.load('output/ResNet50-FCN/299.pdparams')MAX_EPOCH = 300LR = 0.01WEIGHT_DECAY = 5e-4MOMENTUM = 0.9BATCH_SIZE = 256CIFAR_MEAN = [0.5071, 0.4865, 0.4409]
CIFAR_STD = [0.1942, 0.1918, 0.1958]
DATA_FILE = Nonemodel.prepare(
    paddle.optimizer.Momentum(
        learning_rate=LinearWarmup(CosineAnnealingDecay(LR, MAX_EPOCH), 2000, 0., LR),
        momentum=MOMENTUM,
        parameters=model.parameters(),
        weight_decay=WEIGHT_DECAY),
    paddle.nn.CrossEntropyLoss(),
    paddle.metric.Accuracy(topk=(1,5)))# 定义数据集增强方式transforms = Compose([
    RandomCrop(32, padding=4),
    RandomApply(BrightnessTransform(0.1)),
    RandomApply(ContrastTransform(0.1)),
    RandomHorizontalFlip(),
    RandomRotation(15),
    ToArray(),
    Normalize(CIFAR_MEAN, CIFAR_STD),    # Resize(size=224)])
val_transforms = Compose([ToArray(), Normalize(CIFAR_MEAN, CIFAR_STD)])# 加载训练和测试数据集train_set = Cifar10(DATA_FILE, mode='train', transform=transforms)
test_set = Cifar10(DATA_FILE, mode='test', transform=val_transforms)# 定义保存方式和训练可视化checkpoint_callback = paddle.callbacks.ModelCheckpoint(save_freq=1, save_dir='output/ResNet50-FCN')
callbacks = [LRSchedulerM(),checkpoint_callback, callbacks.VisualDL('vis_logs/resnet50_FCN.log')]# 训练模型model.fit(
    train_set,
    test_set,
    epochs=MAX_EPOCH, 
    batch_size=BATCH_SIZE,
    shuffle=True,
    num_workers=4,
    verbose=1, 
    callbacks=callbacks,
)
登录后复制
   

对照实验:原始ResNet50

In [ ]
model = paddle.Model(paddle.vision.models.resnet50(pretrained=False))# 加载checkpoint# model.load('output/ResNet50/299.pdparams')MAX_EPOCH = 300LR = 0.01WEIGHT_DECAY = 5e-4MOMENTUM = 0.9BATCH_SIZE = 256CIFAR_MEAN = [0.5071, 0.4865, 0.4409]
CIFAR_STD = [0.1942, 0.1918, 0.1958]
DATA_FILE = Nonemodel.prepare(
    paddle.optimizer.Momentum(
        learning_rate=LinearWarmup(CosineAnnealingDecay(LR, MAX_EPOCH), 2000, 0., LR),
        momentum=MOMENTUM,
        parameters=model.parameters(),
        weight_decay=WEIGHT_DECAY),
    paddle.nn.CrossEntropyLoss(),
    paddle.metric.Accuracy(topk=(1,5)))# 定义数据集增强方式transforms = Compose([
    RandomCrop(32, padding=4),
    RandomApply(BrightnessTransform(0.1)),
    RandomApply(ContrastTransform(0.1)),
    RandomHorizontalFlip(),
    RandomRotation(15),
    ToArray(),
    Normalize(CIFAR_MEAN, CIFAR_STD),
])
val_transforms = Compose([ToArray(), Normalize(CIFAR_MEAN, CIFAR_STD)])# 加载训练和测试数据集train_set = Cifar100(DATA_FILE, mode='train', transform=transforms)
test_set = Cifar100(DATA_FILE, mode='test', transform=val_transforms)# 定义保存方式和训练可视化checkpoint_callback = paddle.callbacks.ModelCheckpoint(save_freq=1, save_dir='output/ResNet50')
callbacks = [LRSchedulerM(),checkpoint_callback, callbacks.VisualDL('vis_logs/resnet50.log')]# 训练模型model.fit(
    train_set,
    test_set,
    epochs=MAX_EPOCH, 
    batch_size=BATCH_SIZE,
    shuffle=True,
    num_workers=4,
    verbose=1, 
    callbacks=callbacks,
)
登录后复制
   

实验结果

两次实验均使用相同的参数:

  • epoch = 100
  • lr = 0.01
  • weight_decay = 5e-4
  • momentum = 0.9
  • pretrained = False

ResNet50-FCN模型的Top-1 acc和Top-5 acc如下图所示:

【AI达人特训营】基于全卷积神经网络的图像分类复现 - php中文网        

ResNet50模型的Top-1 acc和Top-5 acc如下图所示:

【AI达人特训营】基于全卷积神经网络的图像分类复现 - php中文网        

通过比较,经过修改后的模型效果得到了提升,且准确率上升过程更加平滑,抖动较小。

以上就是【AI达人特训营】基于全卷积神经网络的图像分类复现的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号