基于SPPNET的图像分类网络

P粉084495128
发布: 2025-07-30 11:33:02
原创
970人浏览过
本文复现了基于SPP特征金字塔池化的图像分类网络,SPP可解决输入尺寸差异问题。网络含五层卷积、两层全连接及SPP层,在Cifar10数据集上实验,经20个epoch训练,训练准确率约28.97%,测试准确率约23.73%,呈现了模型的训练过程与性能。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于sppnet的图像分类网络 - php中文网

基于SPPNET的图像分类网络

1 前言

  由于工作需要,最近整理了神经网络中的各种池化方式,对于Spatial Pyramid Pooling(SPP)特征金字塔池化在本项目中做了一个复现,并基于此模块搭建了一个图像分类网络,并在Cifar10数据库中进行了实验。

2 特征金字塔池化SPP介绍

  由于卷积神经网络的全连接层需要固定输入的尺寸,而Selective search所得到的候选区域存在尺寸上的差异,无法直接输入到卷积神经网络中实现区域的特征提取,因此RCNN先将候选区缩放至指定大小随后再输入到模型中进行特征提取直接对区域进行裁剪会导致区域缺失,而将区域缩放则可能导致目标过度形变而导致后续分类错误(例如筷子是细长形的,如果将其直接形变成正方形则会使其严重失真而错误分类)。
基于SPPNET的图像分类网络 - php中文网
  如上图所示,直接对区域进行裁剪会导致区域缺失,而将区域缩放则可能导致目标过度形变而导致后续分类错误(例如筷子是细长形的,如果将其直接形变成正方形则会使其严重失真而错误分类)。其主要结构如下图所示:
基于SPPNET的图像分类网络 - php中文网        

3 代码复现

In [1]
import mathimport paddleimport paddle.nn as nnimport functoolsimport numpy as npimport paddle.nn.functional as Fdef spatial_pyramid_pool(previous_conv, num_sample, previous_conv_size, out_pool_size):
    '''
    previous_conv: a tensor vector of previous convolution layer
    num_sample: an int number of image in the batch
    previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
    out_pool_size: a int vector of expected output size of max pooling layer
    
    returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
    '''    
    # print(previous_conv.size())

    for i in range(len(out_pool_size)): 
        # print(previous_conv_size)
        # out_pool_size[i]
        h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
        w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
        h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)
        w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)


        maxpool = nn.MaxPool2D((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
        x = maxpool(previous_conv)        if(i == 0):            # spp = x.reshape(num_sample,-1)
   
            spp = paddle.reshape(x, [num_sample,-1])        else:

            spp = paddle.concat([spp,paddle.reshape(x, [num_sample,-1])], 1)    return spp
登录后复制
   

3.1 网络搭建

  在搭建的CNN网络中,采用了五层卷积层,两层全连接层,在卷积层与全连接层之间添加了SPP层。其模型结构在下面的cell中已经输出

Bing图像创建器
Bing图像创建器

必应出品基于DALL·E的AI绘图工具

Bing图像创建器45
查看详情 Bing图像创建器
In [2]
class SPP_NET(nn.Layer):
    '''
    A CNN model which adds spp layer so that we can input multi-size tensor
    '''
    def __init__(self, input_nc=3, ndf=64,  gpu_ids=[0]):
        super(SPP_NET, self).__init__()
        self.gpu_ids = gpu_ids
        self.output_num = [4,2,1]
        
        self.conv1 = nn.Conv2D(input_nc, ndf, kernel_size=4, stride=2)
        
        self.conv2 = nn.Conv2D(ndf, ndf * 2, kernel_size=4, stride=2)
        self.BN1 = nn.BatchNorm2D(ndf * 2)

        self.conv3 = nn.Conv2D(ndf * 2, ndf * 4, kernel_size=4, stride=2)
        self.BN2 = nn.BatchNorm2D(ndf * 4)

        self.conv4 = nn.Conv2D(ndf * 4, ndf * 8, kernel_size=4, stride=2)
        self.BN3 = nn.BatchNorm2D(ndf * 8)        # self.conv5 = nn.Conv2D(ndf * 8, 64, kernel_size=4, stride=2)
        self.fc1 = nn.Linear(10752,4096)
        self.fc2 = nn.Linear(4096,1000)    def forward(self,x):
        x = self.conv1(x)
        x = F.leaky_relu(x)

        x = self.conv2(x)
        x = F.leaky_relu(self.BN1(x))

        x = self.conv3(x)
        x = F.leaky_relu(self.BN2(x))
        
        x = self.conv4(x)        # print(x.shape)
        # x = F.leaky_relu(self.BN3(x))
        # x = self.conv5(x)
        spp = spatial_pyramid_pool(x,512,[int(x.shape[2]),int(x.shape[3])],self.output_num)        
        # print(spp.shape)

        fc1 = self.fc1(spp)
        fc2 = self.fc2(fc1)
        s = nn.Sigmoid()
        output = s(fc2)        return spp
登录后复制
   
In [3]
spp = SPP_NET()

paddle.summary(spp, (512, 3, 224, 224))
登录后复制
       
W0613 21:40:22.094002  4661 gpu_context.cc:278] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.2, Runtime API Version: 10.1
W0613 21:40:22.098572  4661 gpu_context.cc:306] device: 0, cuDNN Version: 7.6.
登录后复制
       
----------------------------------------------------------------------------
 Layer (type)        Input Shape          Output Shape         Param #    
============================================================================
   Conv2D-1     [[512, 3, 224, 224]]  [512, 64, 111, 111]       3,136     
   Conv2D-2     [[512, 64, 111, 111]]  [512, 128, 54, 54]      131,200    
 BatchNorm2D-1  [[512, 128, 54, 54]]   [512, 128, 54, 54]        512      
   Conv2D-3     [[512, 128, 54, 54]]   [512, 256, 26, 26]      524,544    
 BatchNorm2D-2  [[512, 256, 26, 26]]   [512, 256, 26, 26]       1,024     
   Conv2D-4     [[512, 256, 26, 26]]   [512, 512, 12, 12]     2,097,664   
   Linear-1        [[512, 10752]]         [512, 4096]        44,044,288   
   Linear-2         [[512, 4096]]         [512, 1000]         4,097,000   
============================================================================
Total params: 50,899,368
Trainable params: 50,897,832
Non-trainable params: 1,536
----------------------------------------------------------------------------
Input size (MB): 294.00
Forward/backward pass size (MB): 7656.16
Params size (MB): 194.17
Estimated Total Size (MB): 8144.32
----------------------------------------------------------------------------
登录后复制
       
{'total_params': 50899368, 'trainable_params': 50897832}
登录后复制
               

4 模型实验

In [4]
import paddlefrom paddle.metric import Accuracyfrom paddle.vision.transforms import Compose, Normalize, Resize, Transpose, ToTensor

callback = paddle.callbacks.VisualDL(log_dir='visualdl_log_dir')

normalize = Normalize(mean=[0.5, 0.5, 0.5],
                    std=[0.5, 0.5, 0.5],
                    data_format='HWC')
transform = Compose([ToTensor(), Normalize(), Resize(size=(224,224))])

cifar10_train = paddle.vision.datasets.Cifar10(mode='train',
                                               transform=transform)
cifar10_test = paddle.vision.datasets.Cifar10(mode='test',
                                              transform=transform)# 构建训练集数据加载器train_loader = paddle.io.DataLoader(cifar10_train, batch_size=512, shuffle=True, drop_last=True)# 构建测试集数据加载器test_loader = paddle.io.DataLoader(cifar10_test, batch_size=512, shuffle=True, drop_last=True)

model = paddle.Model(SPP_NET())
optim = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())

model.prepare(
    optim,
    paddle.nn.CrossEntropyLoss(),
    Accuracy()
    )

model.fit(train_data=train_loader,
        eval_data=test_loader,
        epochs=20,
        callbacks=callback,
        verbose=1
        )
登录后复制
       
The loss value printed in the log is the current step, and the metric is the average value of previous steps.
Epoch 1/20
登录后复制
       
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/nn/layer/norm.py:654: UserWarning: When training, we now always track global mean and variance.
  "When training, we now always track global mean and variance.")
登录后复制
       
step 97/97 [==============================] - loss: 3.0664 - acc: 0.0645 - 963ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0703 - acc: 0.0659 - 693ms/step          
Eval samples: 9728
Epoch 2/20
step 97/97 [==============================] - loss: 3.0675 - acc: 0.0742 - 972ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0606 - acc: 0.0702 - 677ms/step          
Eval samples: 9728
Epoch 3/20
step 97/97 [==============================] - loss: 3.0885 - acc: 0.0756 - 962ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0654 - acc: 0.0738 - 682ms/step          
Eval samples: 9728
Epoch 4/20
step 97/97 [==============================] - loss: 3.0523 - acc: 0.0772 - 963ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0613 - acc: 0.0730 - 688ms/step          
Eval samples: 9728
Epoch 5/20
step 97/97 [==============================] - loss: 3.0516 - acc: 0.0836 - 970ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0512 - acc: 0.0791 - 701ms/step          
Eval samples: 9728
Epoch 6/20
step 97/97 [==============================] - loss: 3.0462 - acc: 0.0899 - 962ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0617 - acc: 0.0816 - 690ms/step          
Eval samples: 9728
Epoch 7/20
step 97/97 [==============================] - loss: 3.0466 - acc: 0.0957 - 981ms/step          
Eval begin...
step 19/19 [==============================] - loss: 3.0432 - acc: 0.0847 - 693ms/step          
Eval samples: 9728
Epoch 8/20
step 97/97 [==============================] - loss: 2.9990 - acc: 0.1179 - 968ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.9948 - acc: 0.1276 - 691ms/step          
Eval samples: 9728
Epoch 9/20
step 97/97 [==============================] - loss: 2.8898 - acc: 0.1448 - 984ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.9805 - acc: 0.1280 - 700ms/step          
Eval samples: 9728
Epoch 10/20
step 97/97 [==============================] - loss: 2.8020 - acc: 0.1579 - 968ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.8480 - acc: 0.1619 - 685ms/step          
Eval samples: 9728
Epoch 11/20
step 97/97 [==============================] - loss: 2.8151 - acc: 0.1733 - 973ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.8623 - acc: 0.1589 - 680ms/step          
Eval samples: 9728
Epoch 12/20
step 97/97 [==============================] - loss: 2.8155 - acc: 0.1836 - 968ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.8546 - acc: 0.1651 - 689ms/step          
Eval samples: 9728
Epoch 13/20
step 97/97 [==============================] - loss: 2.7447 - acc: 0.1943 - 971ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.8033 - acc: 0.1772 - 712ms/step          
Eval samples: 9728
Epoch 14/20
step 97/97 [==============================] - loss: 2.7725 - acc: 0.2043 - 968ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.8072 - acc: 0.1818 - 695ms/step          
Eval samples: 9728
Epoch 15/20
step 97/97 [==============================] - loss: 2.6786 - acc: 0.2165 - 965ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.7682 - acc: 0.1875 - 703ms/step          
Eval samples: 9728
Epoch 16/20
step 97/97 [==============================] - loss: 2.6975 - acc: 0.2253 - 966ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.7896 - acc: 0.1958 - 723ms/step          
Eval samples: 9728
Epoch 17/20
step 97/97 [==============================] - loss: 2.6766 - acc: 0.2398 - 993ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.7029 - acc: 0.2032 - 685ms/step          
Eval samples: 9728
Epoch 18/20
step 97/97 [==============================] - loss: 2.6638 - acc: 0.2562 - 971ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.7321 - acc: 0.2071 - 692ms/step          
Eval samples: 9728
Epoch 19/20
step 97/97 [==============================] - loss: 2.6738 - acc: 0.2702 - 984ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.7565 - acc: 0.2154 - 685ms/step          
Eval samples: 9728
Epoch 20/20
step 97/97 [==============================] - loss: 2.6295 - acc: 0.2897 - 984ms/step          
Eval begin...
step 19/19 [==============================] - loss: 2.6954 - acc: 0.2373 - 695ms/step          
Eval samples: 9728
登录后复制
       

5 训练过程可视化

基于SPPNET的图像分类网络 - php中文网        

以上就是基于SPPNET的图像分类网络的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号