【ICLR 2024】MogaNet: 高效多阶门控聚合网络

P粉084495128
发布: 2025-07-31 10:10:24
原创
364人浏览过
MogaNet是高效多阶门控聚合网络,属纯卷积架构。其通过SMixer和CMixer模块,在空间和通道交互中促进多阶交互并情境化,平衡复杂度与性能。在ImageNet分类等任务表现优异,轻量版MogaNet-T以1.44G FLOPs达80.0%精度,超ParC-Net-S且节省59% FLOPs。代码复现含各组件及训练过程,实验验证了其有效性。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【iclr 2024】moganet: 高效多阶门控聚合网络 - php中文网

MogaNet: 高效多阶门控聚合网络

摘要

        自从Vision Transformers(ViT)取得成功以来,对Transformers架构的探索也引发了现代ConvNets的复兴。在这项工作中,通过交互复杂性的角度来探索DNN的表示能力。经验表明,交互复杂性是视觉识别的一个容易被忽视但又必不可少的指标。因此,本文作者提出了一个新的高效ConvNet系列,名为MogaNet,以在基于ConvNet的纯模型中进行信息上下文挖掘,并在复杂度和性能方面进行了更好的权衡。在MogaNet中,通过在空间和通道交互空间中利用两个专门设计的聚合模块,促进了跨多个复杂性的交互并将其情境化。本文对ImageNet分类、COCO目标检测和ADE20K语义分割任务进行了广泛的研究。实验结果表明,MogaNet在主流场景和所有模型规模中建立了比其他流行方法更先进的新SOTA。通常,轻量级的MogaNet-T通过在ImageNet-1K上进行精确的训练设置,以1.44G的FLOPs实现80.0%的top-1精度,超过ParC-Net-S 1.4%的精度,但节省了59%(2.04G)的FLOPs。

1. MagaNet

        现有方法仍然存在一个表示瓶颈:自注意力或大核卷积的朴素实现阻碍了区分性上下文信息和全局交互的建模,导致DNN与人类视觉系统之间的认知差距。为此本文从特征交互复杂性的角度提出了一种纯卷积架构MogaNet。MogaNet采用类似金字塔式ViT的架构,包括两个模块:SMixer和CMixer【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

1.1 SMixer

        SMixer主要包括两个模块:特征分解(FD)和多阶门控聚合(Multi-Order Gated Aggregation)

  1. FD

        为了强迫网络关注多阶交互,本文提出了FD模块,动态地排除不重要的交互(Patch自身的0阶交互【Conv2D 1 * 1】和覆盖所有Patch的n阶交互【GAP】),详细操作如下公式所示:

Y=1×1(X)Z=GELU(Y+γs(YGAP(Y)))Y=Conv1×1(X)Z=GELU(Y+γs⊙(Y−GAP(Y)))

小门道AI
小门道AI

小门道AI是一个提供AI服务的网站

小门道AI117
查看详情 小门道AI
  1. Multi-Order Gated Aggregation

        多阶门控聚合包含两个分支:聚合分支和上下文分支,聚合分支负责生成门控权重,上下文分支通过不同核大小和不同空洞大小的卷积进行多尺度的特征提取,从而捕获上下文多阶交互。值得注意的是,两个分支的输出使用SiLU激活函数(SILU既具有Sigmoid门控效应,又具有稳定的训练特性)。公式表示为:

Z=SiLU(1×1(X))FϕSiLU(1×1(YC))GψZ=FϕSiLU(Conv1×1(X))⊙GψSiLU(Conv1×1(YC))

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

1.2 CMixer

        传统的FFN会导致大量的特征冗余,降低效率,本文提出了一种新的通道聚合模块以重分配多阶特征,通道聚合与FD操作类似,具体公式如下所示:

Y=GELU(3×3(1×1(Norm(X))))Z=1×1(CA(Y))+XCA(X)=X+γc(XGELU(XWr))YZCA(X)=GELU(DW3×3(Conv1×1(Norm(X))))=Conv1×1(CA(Y))+X=X+γc⊙(X−GELU(XWr))

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

2. 代码复现

2.1 下载并导入所需的库

In [ ]
!pip install paddlex
登录后复制
   
In [ ]
%matplotlib inlineimport paddleimport paddle.fluid as fluidimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figureimport paddlex
登录后复制
   

2.2 创建数据集

In [3]
train_tfm = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    paddlex.transforms.MixupImage(),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
登录后复制
   
In [4]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm, )
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
登录后复制
       
train_dataset: 50000
val_dataset: 10000
登录后复制
       
In [5]
batch_size=128
登录后复制
   
In [6]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
登录后复制
   

2.3 标签平滑

In [7]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
登录后复制
   

2.4 DropPath

In [8]
def drop_path(x, drop_prob=0.0, training=False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0.0 or not training:        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
登录后复制
   

2.5 模型的创建

In [9]
class ElementScale(nn.Layer):
    """A learnable element-wise scaler."""

    def __init__(self, embed_dims, init_value=0.):
        super().__init__()
        self.scale =self.create_parameter((1, embed_dims, 1, 1),
            default_initializer=nn.initializer.Constant(init_value))    def forward(self, x):
        return x * self.scale
登录后复制
   

2.5.1 CMixer

In [10]
class ChannelAggregationFFN(nn.Layer):
    def __init__(self, embed_dims, feedforward_channels, kernel_size=3, act_fuc=nn.GELU, ffn_drop=0.):
        super().__init__()

        self.fc1 = nn.Conv2D(embed_dims, feedforward_channels, 1)
        self.dwconv = nn.Conv2D(feedforward_channels, feedforward_channels, kernel_size, padding=kernel_size // 2, groups= feedforward_channels)
        self.fc2 = nn.Conv2D(feedforward_channels, embed_dims, 1)
        self.act = act_fuc()
        self.drop = nn.Dropout(ffn_drop)
        self.decompose = nn.Conv2D(feedforward_channels, 1, 1)
        self.sigma = ElementScale(feedforward_channels, init_value=1e-5)    def forward(self, x):
        x = self.fc1(x)
        x = self.dwconv(x)
        x = self.act(x)
        x = self.drop(x)
        decompose = self.decompose(x)
        decompose = self.act(x)
        x = x + self.sigma(x - decompose)
        x = self.fc2(x)
        x = self.drop(x)        return x
登录后复制
   

2.5.2 SMixer

In [11]
class MultiOrderDWConv(nn.Layer):
    def __init__(self, embed_dims, dw_dilation=[1, 2, 3], channel_split=[1, 3, 4]):
        super().__init__()
        self.split_ratio = [i / sum(channel_split) for i in channel_split]
        self.embed_dims = embed_dims
        self.embed_dims_1 = int(embed_dims * self.split_ratio[1])
        self.embed_dims_2 = int(embed_dims * self.split_ratio[2])
        self.embed_dims_0 = embed_dims - self.embed_dims_1 - self.embed_dims_2        assert len(dw_dilation) == len(channel_split) == 3
        assert 1 <= min(dw_dilation) and max(dw_dilation) <= 3
        assert embed_dims % sum(channel_split) == 0

        self.dwconv0 = nn.Conv2D(embed_dims, embed_dims, 5, padding=(1 + 4 * dw_dilation[0]) // 2,
                            groups=embed_dims, dilation=dw_dilation[0])

        self.dwconv1 = nn.Conv2D(self.embed_dims_1, self.embed_dims_1, 5, padding=(1 + 4 * dw_dilation[1]) // 2,
                            groups=self.embed_dims_1, dilation=dw_dilation[1])

        self.dwconv2 = nn.Conv2D(self.embed_dims_2, self.embed_dims_2, 7, padding=(1 + 6 * dw_dilation[2]) // 2,
                            groups=self.embed_dims_2, dilation=dw_dilation[2])

        self.pwconv = nn.Conv2D(embed_dims, embed_dims, 1)    def forward(self, x):
        x = self.dwconv0(x)
        x_1 = self.dwconv1(x[:, self.embed_dims_0:self.embed_dims_0 + self.embed_dims_1, ...])
        x_2 = self.dwconv2(x[:, self.embed_dims - self.embed_dims_2:, ...])
        x_0 = x[:, :self.embed_dims_0, ...]
        x = paddle.concat([x_0, x_1, x_2], axis=1)
        x = self.pwconv(x)        return x
登录后复制
   
In [12]
class MultiOrderGatedAggregation(nn.Layer):
    def __init__(self, embed_dims, attn_dw_dilation=[1, 2, 3], attn_channel_split=[1, 3, 4], attn_act_fuc=nn.Silu):
        super().__init__()

        self.proj1 = nn.Conv2D(embed_dims, embed_dims, 1)
        self.gate = nn.Conv2D(embed_dims, embed_dims, 1)
        self.value = MultiOrderDWConv(embed_dims, attn_dw_dilation, attn_channel_split)
        self.proj2 = nn.Conv2D(embed_dims, embed_dims, 1)
        self.gate_act = attn_act_fuc()
        self.value_act = attn_act_fuc()
        self.act = attn_act_fuc()
        self.sigma = ElementScale(embed_dims, 1e-5)    def forward(self, x):
        shortcut = x
        x = self.proj1(x)
        x = self.sigma(x - paddle.mean(x, axis=[-1, -2], keepdim=True)) + x
        x = self.act(x)
        x = self.gate_act(self.gate(x)) * self.value_act(self.value(x))
        x = self.proj2(x)
        x = x + shortcut        return x
登录后复制
   

2.5.3 MogaBlock

In [13]
class MogaBlock(nn.Layer):
    def __init__(self, embed_dims, ffn_ratio=4., drop_rate=0., drop_path_rate=0., act_fuc=nn.GELU, norm=nn.BatchNorm2D,
                 init_value=1e-5, attn_dw_dilation=[1, 2, 3], attn_channel_split=[1, 3, 4], attn_act_fuc=nn.Silu):
        super().__init__()

        self.norm1 = norm(embed_dims)
        self.attn = MultiOrderGatedAggregation(embed_dims, attn_dw_dilation, attn_channel_split, attn_act_fuc)
        self.norm2 = norm(embed_dims)
        self.ffn = ChannelAggregationFFN(embed_dims, int(embed_dims * ffn_ratio), act_fuc=act_fuc, ffn_drop=drop_rate)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()

        self.layer_scales1 = self.create_parameter((1, embed_dims, 1, 1), default_initializer=nn.initializer.Constant(init_value))
        self.layer_scales2 = self.create_parameter((1, embed_dims, 1, 1), default_initializer=nn.initializer.Constant(init_value))    def forward(self, x):
        x = x + self.drop_path(self.layer_scales1 * self.attn(self.norm1(x)))
        x = x + self.drop_path(self.layer_scales2 * self.ffn(self.norm2(x)))        return x
登录后复制
   
In [14]
class ConvPatchEmbed(nn.Layer):
    def __init__(self, in_channels, embed_dims, kernel_size=3, stride=2, norm=nn.BatchNorm2D):
        super().__init__()

        self.proj = nn.Conv2D(in_channels, embed_dims, kernel_size, padding=kernel_size // 2, stride=stride)
        self.norm = norm(embed_dims)    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)        return x, (x.shape[-2], x.shape[-1])
登录后复制
   
In [15]
class StackConvPatchEmbed(nn.Layer):    # Stem
    def __init__(self, in_channels, embed_dims, kernel_size=3, stride=2, act_fuc=nn.GELU, norm=nn.BatchNorm2D):
        super().__init__()

        self.proj = nn.Sequential(
            nn.Conv2D(in_channels, embed_dims // 2, kernel_size, padding=kernel_size // 2, stride=stride),
            norm(embed_dims // 2),
            act_fuc(),
            nn.Conv2D(embed_dims // 2, embed_dims, kernel_size, padding=kernel_size // 2, stride=stride),
        )
        self.norm = norm(embed_dims)    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)        return x, (x.shape[-2], x.shape[-1])
登录后复制
   

2.5.4 MogaNet

In [16]
class MogaNet(nn.Layer):
    arch_zoo = {
    **dict.fromkeys(['xt', 'x-tiny', 'xtiny'],
                    {'embed_dims': [32, 64, 96, 192],                        'depths': [3, 3, 10, 2],                        'ffn_ratios': [8, 8, 4, 4]}),
    **dict.fromkeys(['t', 'tiny'],
                    {'embed_dims': [32, 64, 128, 256],                        'depths': [3, 3, 12, 2],                        'ffn_ratios': [8, 8, 4, 4]}),
    **dict.fromkeys(['s', 'small'],
                    {'embed_dims': [64, 128, 320, 512],                        'depths': [2, 3, 12, 2],                        'ffn_ratios': [8, 8, 4, 4]}),
    **dict.fromkeys(['b', 'base'],
                    {'embed_dims': [64, 160, 320, 512],                        'depths': [4, 6, 22, 3],                        'ffn_ratios': [8, 8, 4, 4]}),
    **dict.fromkeys(['l', 'large'],
                    {'embed_dims': [64, 160, 320, 640],                        'depths': [4, 6, 44, 4],                        'ffn_ratios': [8, 8, 4, 4]}),
    **dict.fromkeys(['xl', 'x-large', 'xlarge'],
                    {'embed_dims': [96, 192, 480, 960],                        'depths': [6, 6, 44, 4],                        'ffn_ratios': [8, 8, 4, 4]}),
}    def __init__(self, arch='tiny', in_channels=3, num_classes=1000, drop_rate=0., drop_path_rate=0., init_value=1e-5,
                 patch_sizes=[3, 3, 3, 3], stem_norm=nn.BatchNorm2D, conv_norm=nn.BatchNorm2D,
                 patchembed_types=['ConvEmbed', 'Conv', 'Conv', 'Conv',], attn_dw_dilation=[1, 2, 3],
                 attn_channel_split=[1, 3, 4], attn_act_fuc=nn.Silu, attn_final_dilation=True):
        super().__init__()        if isinstance(arch, str):
            arch = arch.lower()            assert arch in set(self.arch_zoo), \                f'Arch {arch} is not in default archs {set(self.arch_zoo)}'
            self.arch_settings = self.arch_zoo[arch]        else:
            essential_keys = {'embed_dims', 'depths', 'ffn_ratios'}            assert isinstance(arch, dict) and set(arch) == essential_keys, \                f'Custom arch needs a dict with keys {essential_keys}'
            self.arch_settings = arch

        self.embed_dims = self.arch_settings['embed_dims']
        self.depths = self.arch_settings['depths']
        self.ffn_ratios = self.arch_settings['ffn_ratios']
        self.num_stages = len(self.depths)
        self.use_layer_norm = isinstance(stem_norm, nn.LayerNorm)        assert len(patchembed_types) == self.num_stages

        total_depth = sum(self.depths)
        dpr = [
            x.item() for x in paddle.linspace(0, drop_path_rate, total_depth)
        ]  # stochastic depth decay rule

        cur_block_idx = 0
        for i, depth in enumerate(self.depths):            if i == 0 and patchembed_types[i] == "ConvEmbed":                assert patch_sizes[i] <= 3
                patch_embed = StackConvPatchEmbed(
                    in_channels=in_channels,
                    embed_dims=self.embed_dims[i],
                    kernel_size=patch_sizes[i],
                    stride=patch_sizes[i] // 2 + 1,
                    act_fuc=nn.GELU,
                    norm=conv_norm,
                )            else:
                patch_embed = ConvPatchEmbed(
                    in_channels=in_channels if i == 0 else self.embed_dims[i - 1],
                    embed_dims=self.embed_dims[i],
                    kernel_size=patch_sizes[i],
                    stride=patch_sizes[i] // 2 + 1,
                    norm=conv_norm)            if i == self.num_stages - 1 and not attn_final_dilation:
                attn_dw_dilation = [1, 2, 1]
            blocks = nn.LayerList([
                MogaBlock(
                    embed_dims=self.embed_dims[i],
                    ffn_ratio=self.ffn_ratios[i],
                    drop_rate=drop_rate,
                    drop_path_rate=dpr[cur_block_idx + j],
                    norm=conv_norm,
                    init_value=init_value,
                    attn_dw_dilation=attn_dw_dilation,
                    attn_channel_split=attn_channel_split,
                    attn_act_fuc=attn_act_fuc
                ) for j in range(depth)
            ])
            cur_block_idx += depth
            norm = stem_norm(self.embed_dims[i])

            self.add_sublayer(f'patch_embed{i + 1}', patch_embed)
            self.add_sublayer(f'blocks{i + 1}', blocks)
            self.add_sublayer(f'norm{i + 1}', norm)        # Classifier head
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dims[-1], num_classes) \            if num_classes > 0 else nn.Identity()        # init for classification
        self.apply(self._init_weights)    def _init_weights(self, m):
        tn = nn.initializer.TruncatedNormal(std=.02)
        kaiming = nn.initializer.KaimingNormal()
        zeros = nn.initializer.Constant(0.)
        ones = nn.initializer.Constant(1.)        if isinstance(m, nn.Linear):
            tn(m.weight)            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros(m.bias)        elif isinstance(m, (nn.Conv1D, nn.Conv2D)):
            kaiming(m.weight)            if m.bias is not None:
                zeros(m.bias)        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2D)):
            zeros(m.bias)
            ones(m.weight)    def forward(self, x):

        for i in range(self.num_stages):
            patch_embed = getattr(self, f'patch_embed{i + 1}')
            blocks = getattr(self, f'blocks{i + 1}')
            norm = getattr(self, f'norm{i + 1}')

            x, hw_shape = patch_embed(x)            for block in blocks:
                x = block(x)            if self.use_layer_norm:
                x = x.flatten(2).transpose([0, 2, 1])
                x = norm(x)
                x = x.reshape(-1, *hw_shape,
                            block.out_channels).transpose([0, 3, 1, 2])            else:
                x = norm(x)

        x = self.head(x.mean(axis=[2, 3]))        return x
登录后复制
   

2.5.5 模型参数

In [ ]
model = MogaNet(arch='xt', num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

In [ ]
model = MogaNet(arch='t', num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

In [ ]
model = MogaNet(arch='s', num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

In [ ]
model = MogaNet(arch='b', num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

In [ ]
model = MogaNet(arch='l', num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

In [ ]
model = MogaNet(arch='xl', num_classes=10)
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

2.6 训练

In [23]
learning_rate = 0.001n_epochs = 100paddle.seed(42)
np.random.seed(42)
登录后复制
   
In [ ]
work_path = 'work/model'# MogaNet-xtmodel = MogaNet(arch='xt', num_classes=10)

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
登录后复制
   

【ICLR 2024】MogaNet: 高效多阶门控聚合网络 - php中文网        

2.7 实验结果

In [25]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
登录后复制
   
In [26]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
登录后复制
       
<Figure size 1000x600 with 1 Axes>
登录后复制
               
In [27]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
登录后复制
       
<Figure size 1000x600 with 1 Axes>
登录后复制
               
In [28]
import time
work_path = 'work/model'model = MogaNet(arch='xt', num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
登录后复制
       
Throughout:707
登录后复制
       
In [29]
def get_cifar10_labels(labels):
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
登录后复制
   
In [30]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)        if pred or gt:
            ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])    return axes
登录后复制
   
In [31]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = MogaNet(arch='xt', num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
登录后复制
       
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
登录后复制
       
<Figure size 2700x150 with 18 Axes>
登录后复制
               
In [ ]
!pip install interpretdl
登录后复制
   
In [33]
import interpretdl as it
登录后复制
   
In [34]
work_path = 'work/model'model = MogaNet(arch='xt', num_classes=10)
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
登录后复制
   
In [35]
X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
lime = it.LIMECVInterpreter(model)
登录后复制
   
In [36]
lime_weights = lime.interpret(X.numpy()[3], interpret_class=y.numpy()[3], batch_size=100, num_samples=10000, visual=True)
登录后复制
       
100%|██████████| 10000/10000 [00:56<00:00, 176.50it/s]
登录后复制
       
<Figure size 640x480 with 1 Axes>
登录后复制
               

以上就是【ICLR 2024】MogaNet: 高效多阶门控聚合网络的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号