【AI达人特训营第三期】Conv2Former:一种ViT风格的卷积模块

P粉084495128
发布: 2025-07-31 10:38:38
原创
905人浏览过
本文复现了Conv2Former模型,其采用Transformer风格的QKV结构,以卷积生成权重加权,平衡全局信息提取与计算开销。在CIFAR-10数据集上,用Conv2Former-N参数({64,128,256,512}维度,{2,2,8,2}深度)训练50个epoch,验证集准确率达82%,参数884万,优于Swin-T的75%准确率与2753万参数,展现出设计优越性。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【ai达人特训营第三期】conv2former:一种vit风格的卷积模块 - php中文网

Conv2Former:一种transformer风格的卷积特征提取方式

1.摘要

近年来,有大量的卷积模型通过堆叠不同感受野的卷积以及采用金字塔结构的网络模型提取特征,但这些模型往往忽视了全局信息的提取。直到vision transformer的提出,首次将transformer引入视觉领域,并在全局信息建模展现了更好的性能,但不可忽视的是transformer在处理高分辨率图片时会产生大量的计算开销。最近,ConvNeXt,在传统残差结构的基础上,使用了更为先进的训练技巧,使传统卷积的性能可以和ViT不相上下,这让我们重新思考能否设计一种全新的结构可以大幅减低计算开销的同时,有着transformer一样的全局特征提取的能力,Conv2Former使用了transformer一样的QKV结构,但采用卷积生成权重加权,为我们进一步设计卷积模型提供了一种思路。

![image【AI达人特训营第三期】Conv2Former:一种ViT风格的卷积模块 - php中文网.png]

In [ ]
!mkdir /home/aistudio/Conv2Former-libraries
!pip install paddlex -t /home/aistudio/Conv2Former-libraries
登录后复制
   
In [ ]
import paddleimport numpy as npfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport os#import matplotlib.pyplot as plt#from matplotlib.pyplot import figureimport sys 
sys.path.append('/home/aistudio/Conv2Former-libraries')import paddlex
登录后复制
   

一些训练tricks,labelsoomthing and droppath.

In [5]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
登录后复制
   
In [6]
def drop_path(x, drop_prob=0.0, training=False):
        """
        Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
        the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
        See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
        """
        if drop_prob == 0.0 or not training:            return x
        keep_prob = paddle.to_tensor(1 - drop_prob)
        shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
        random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
        random_tensor = paddle.floor(random_tensor)  # binarize
        output = x.divide(keep_prob) * random_tensor        return outputclass DropPath(nn.Layer):
        def __init__(self, drop_prob=None):
            super(DropPath, self).__init__()
            self.drop_prob = drop_prob        def forward(self, x):
            return drop_path(x, self.drop_prob, self.training)
登录后复制
   

2.数据载入及增强

(数据集:cifar-10) 作者采用了一些常见的数据增强方式(未完全复现):MixUp、CutMix、Stochastic Depth、 Random Erasing 、Label Smoothing、RandAug 、Layer Scale

In [7]
train_tfm = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    paddlex.transforms.MixupImage(),    #transforms.Cutmix(),
    transforms.RandomResizedCrop(32, scale=(0.6, 1.0)),
    transforms.RandomErasing(),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((32,32)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

batch_size=256paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='./data/cifar-10-python.tar.gz', mode='train', transform = train_tfm,)
val_dataset = Cifar10(data_file='./data/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))


train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=2)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=2)
登录后复制
       
train_dataset: 50000
val_dataset: 10000
登录后复制
       

3.模型创建

3.1 Conv2Former模块创建【AI达人特训营第三期】Conv2Former:一种ViT风格的卷积模块 - php中文网        

由于显存以及训练条件限制,我们将原文设计的224乘224的输入改为32乘32输入,并采用Conv2Former-N的模型参数进行堆叠,即{C1, C2, C3, C4}={64, 128, 256, 512};{L1, L2, L3, L4}={2, 2, 8, 2}

采风问卷
采风问卷

采风问卷是一款全新体验的调查问卷、表单、投票、评测的调研平台,新奇的交互形式,漂亮的作品,让客户眼前一亮,让创作者获得更多的回复。

采风问卷20
查看详情 采风问卷
In [8]
class MLP(nn.Layer):
    def __init__(self, dim, mlp_ratio=4,  drop=0.,):
        super().__init__()

        self.norm = nn.LayerNorm(dim, epsilon=1e-6,)

        self.fc1 = nn.Conv2D(dim, dim * mlp_ratio, 1)
        self.pos = nn.Conv2D(dim * mlp_ratio, dim * mlp_ratio, 3, padding=1, groups=dim * mlp_ratio)
        self.fc2 = nn.Conv2D(dim * mlp_ratio, dim, 1)
        self.act = nn.GELU()
        self.drop = nn.Dropout(drop)    def forward(self, x):
        B, C, H, W = x.shape

        x = self.norm(x.transpose([0, 2, 3, 1])).transpose([0, 3, 1, 2])
        x = self.fc1(x)
        x = self.act(x)
        x = x + self.act(self.pos(x))
        x = self.fc2(x)        return x
登录后复制
   
In [9]
class ConvMod(nn.Layer):
    def __init__(self, dim):
        super().__init__()

        self.norm = nn.LayerNorm(dim, epsilon=1e-6,)
        self.a = nn.Sequential(
            nn.Conv2D(dim, dim, 1),
            nn.GELU(),
            nn.Conv2D(dim, dim, 11, padding=5, groups=dim)
        )

        self.v = nn.Conv2D(dim, dim, 1)
        self.proj = nn.Conv2D(dim, dim, 1)    def forward(self, x):
        B, C, H, W = x.shape

        x = self.norm(x.transpose([0, 2, 3, 1])).transpose([0, 3, 1, 2])
        a = self.a(x)
        x = a * self.v(x)
        x = self.proj(x)        return x
登录后复制
   

3.2Convolutional modulation 作者在此处采用了11乘11的大卷积核,作者通过实验,发现Conv2Former在卷积核大小进一步增大时,性能可以进一步加强,故最终将卷积核大小设置为11乘11。也许是因为这么大的感受野最后赋予了模型更强的全局信息获取能力。

In [10]
class Block(nn.Layer):
    def __init__(self, dim, mlp_ratio=4, drop=0., drop_path=0.,):
        super().__init__()

        self.attn = ConvMod(dim)
        self.mlp = MLP(dim, mlp_ratio, drop=drop)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()    def forward(self, x):
        x = x + self.drop_path(self.attn(x))
        x = x + self.drop_path(self.mlp(x))        return x
登录后复制
   
In [11]
class BasicLayer(nn.Layer):

    def __init__(self, dim, depth, mlp_ratio=4., drop=0., drop_path=0.,downsample=True):

        super(BasicLayer, self).__init__()
        self.dim = dim
        self.drop_path = drop_path        # build blocks
        self.blocks = nn.LayerList([
            Block(dim=dim, mlp_ratio=mlp_ratio, drop=drop, drop_path=drop_path[i],)            for i in range(depth)
        ])        # patch merging layer
        if downsample:
            self.downsample = nn.Sequential(
                nn.GroupNorm(num_groups=1, num_channels=dim),
                nn.Conv2D(dim, dim * 2, kernel_size=2, stride=2,bias_attr=False)
            )        else:
            self.downsample = None

    def forward(self, x):
        for blk in self.blocks:
            x = blk(x)        if self.downsample is not None:
            x = self.downsample(x)        return x
登录后复制
   
In [12]
class Conv2Former(nn.Layer):

    def __init__(self, num_classes=10, depths=(2,2,8,2), dim=(64,128,256,512), mlp_ratio=2.,drop_rate=0.,
                 drop_path_rate=0.15, **kwargs):
        super().__init__()

        norm_layer = nn.LayerNorm
        self.num_classes = num_classes
        self.num_layers = len(depths)
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.pos_drop = nn.Dropout(p=drop_rate)        # stochastic depth decay rule
        dpr = [x.item()               for x in paddle.linspace(0, drop_path_rate, sum(depths))]        # build layers
        self.layers = nn.LayerList()        for i_layer in range(self.num_layers):
            layer = BasicLayer(dim[i_layer],
                               depth=depths[i_layer],
                               mlp_ratio=self.mlp_ratio,
                               drop=drop_rate,
                               drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                               downsample=(i_layer < self.num_layers - 1),
                               )
            self.layers.append(layer)
        self.fc1 = nn.Conv2D(3, 64, 1)
        self.norm = norm_layer(512, epsilon=1e-6,)
        self.avgpool = nn.AdaptiveAvgPool2D(1)
        self.head = nn.Linear(512, num_classes) \            if num_classes > 0 else nn.Identity()

        self.apply(self._init_weights)        
    def _init_weights(self, m):
        tn = nn.initializer.TruncatedNormal(std=.02)
        zeros = nn.initializer.Constant(0.)
        ones = nn.initializer.Constant(1.)        if isinstance(m, nn.Linear):
            tn(m.weight)            if isinstance(m, nn.Linear) and m.bias is not None:
                zeros(m.bias)        elif isinstance(m, (nn.Conv1D, nn.Conv2D)):
            tn(m.weight)            if m.bias is not None:
                zeros(m.bias)        elif isinstance(m, (nn.LayerNorm, nn.GroupNorm)):
            zeros(m.bias)
            ones(m.weight)    def forward_features(self, x):

        x = self.fc1(x)
        x = self.pos_drop(x)        for layer in self.layers:
            x = layer(x)

        x = self.norm(x.transpose([0, 2, 3, 1]))
        x = x.transpose([0, 3, 1, 2])
        x = self.avgpool(x)
        x = paddle.flatten(x, 1)        return x    def forward(self, x):
        x = self.forward_features(x)
        x = self.head(x)        return x
登录后复制
   
In [14]
#参数设置learning_rate = 0.001n_epochs = 50paddle.seed(42)
np.random.seed(42)
batch_size = 256work_path = './work/model'
登录后复制
   
In [ ]
# conv2Former模型打印model = Conv2Former(num_classes=10, depths=(2,2,8,2),dim=(64,128,256,512), mlp_ratio=2,drop_path_rate=0.1)
params_info=paddle.summary(model,input_size=(1, 3, 32, 32))print(params_info)
登录后复制
   

【AI达人特训营第三期】Conv2Former:一种ViT风格的卷积模块 - php中文网        

In [ ]
criterion = LabelSmoothingCrossEntropy()
scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs,
                                                     verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}  # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}  # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training set----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(),
                                                                                train_acc * 100)) # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
            logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = paddle.metric.accuracy(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print(        "#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc * 100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
登录后复制
   

【AI达人特训营第三期】Conv2Former:一种ViT风格的卷积模块 - php中文网        

In [ ]
## 4.结论与讨论
登录后复制
   

4.1结论

本项目通过展现Conv2Former论文中的网络结构,对Conv2Former-N在飞桨框架下完成复现并进行初步训练,在没有预训练的基础上,对在50个epoch训练以后,模型在验证集上的准确率显著提升,在Cifar-10数据集上产生了有一定竞争力的结果,这证明了Conv2Former的模块设计具有一定的优越性,能够在大幅减少计算负担的同时,提升模型性能,同时,也为transformer的可解释性以及卷积模块的重新设计提供了新的思路。

Model Parameter Val Acc
Conv2Former-N 8,847,978 0.82
Swin-T 27,527,044 0.75

注:Swin-T实验结果来自浅析 Swin Transformer,模型为swin_tiny。

以上就是【AI达人特训营第三期】Conv2Former:一种ViT风格的卷积模块的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号