点云处理:基于Paddle2.0尝试提出Kd-Unet对点云进行分割处理

P粉084495128
发布: 2025-08-01 10:46:13
原创
582人浏览过
造点AI
造点AI

夸克 · 造点AI

造点AI325
查看详情 造点AI
本文介绍基于Paddle2.0搭建的Kd-Unet点云分割网络,融合Kd-Networks特征提取与Unet结构,编码器用Kd-Networks下采样5次,解码器反卷积上采样5次,含跳跃连接。使用ShapeNet的.h5数据集,训练40轮后训练集miou为0.431,还包含数据处理、网络定义、训练及评估等内容。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

点云处理:基于paddle2.0尝试提出kd-unet对点云进行分割处理 - php中文网

点云处理:基于Paddle2.0尝试提出Kd-Unet对点云进行分割处理

项目效果

训练四十轮后的miou:

       


训练集上
miou 0.431



    下列图均是分割后的效果图:

点云处理:基于Paddle2.0尝试提出Kd-Unet对点云进行分割处理 - php中文网 点云处理:基于Paddle2.0尝试提出Kd-Unet对点云进行分割处理 - php中文网        

项目说明

①数据集

    本次用到的数据集是ShapeNet,储存格式是.h5文件。

    .h5储存的key值分别为:

    1、data:这一份数据中所有点的xyz坐标,

    2、label:这一份数据所属类别,如airplane等,

    3、pid:这一份数据中所有点所属的类型,如这一份数据属airplane类,则它包含的所有点的类型有机翼、机身等类型。

       

②Kd-Unet 简介

    Kd-Unet是本人第一次自己尝试搭建的新的网络结构,其融合了Kd-Networks中特征提取和分割以及Unet的想法,是一个点云分割网络,效果貌似还不错。

    Kd-Unet通过模仿Kd-Networks和Unet,在encoder时采取Kd-Networks网络结构下采样5次,对称地,其decoder采取反卷积相应上采样5次,并在同一个stage模仿Unet使用了skip-connection。

    Kd-Unet网络结构:

点云处理:基于Paddle2.0尝试提出Kd-Unet对点云进行分割处理 - php中文网        

项目主体

①解压数据集、导入需要的库

In [ ]
!unzip data/data67117/shapenet_part_seg_hdf5_data.zip!mv hdf5_data dataset
登录后复制
   
In [ ]
import osimport numpy as npimport randomimport h5pyimport paddleimport paddle.nn as nnimport paddle.nn.functional as Ffrom visualdl import LogWriterfrom tools.build_KDTree import build_KDTree
登录后复制
   

②数据处理

1、生成训练和测试样本的list

In [ ]
train_list = ['ply_data_train0.h5', 'ply_data_train1.h5', 'ply_data_train2.h5', 'ply_data_train3.h5', 'ply_data_train4.h5', 'ply_data_train5.h5']
test_list = ['ply_data_test0.h5', 'ply_data_test1.h5']
val_list = ['ply_data_val0.h5']
登录后复制
   

2、数据读取

    注:在数据读取这里,可以借助scipy.spatial中的cKDTree很快地生成kdTree。

       

In [149]
def pointDataLoader(mode='train'):
    path = './dataset/'
    BATCHSIZE = 1
    MAX_POINT = 1024
    LEVELS = (np.log(MAX_POINT) / np.log(2)).astype(int)

    datas = []
    split_dims_v = []
    points_v = []
    labels = []
    labels_v = []    if mode == 'train':        for file_list in train_list:
            f = h5py.File(os.path.join(path, file_list), 'r')
            datas.extend(f['data'][:, :MAX_POINT, :])
            labels.extend(f['pid'][:, :MAX_POINT])
            f.close()    elif mode == 'test':        for file_list in test_list:
            f = h5py.File(os.path.join(path, file_list), 'r')
            datas.extend(f['data'][:, :MAX_POINT, :])
            labels.extend(f['pid'][:, :MAX_POINT])
            f.close()    else:        for file_list in val_list:
            f = h5py.File(os.path.join(path, file_list), 'r')
            datas.extend(f['data'][:, :MAX_POINT, :])
            labels.extend(f['pid'][:, :MAX_POINT])
            f.close()
    datas = np.array(datas)    for i in range(len(datas)):
        split_dim, point_tree, label_tree = build_KDTree(datas[i], labels[i], LEVELS)
        split_dim_v = [np.array(item).astype(np.int64) for item in split_dim]
        split_dims_v.append(split_dim_v)
        points_v.append(point_tree[-1].transpose(0, 2, 1))
        labels_v.append(label_tree[-1].transpose(1, 0))

    split_dims_v = np.array(split_dims_v)
    points_v = np.array(points_v)
    labels = np.array(labels_v)    print('==========load over==========')

    index_list = list(range(len(datas)))    def pointDataGenerator():
        if mode == 'train':
            random.shuffle(index_list)        for i in index_list:
            label = np.reshape(labels[i], [-1, 1024, 1]).astype('int64')
            split_dim_v = split_dims_v[i]
            point_v = points_v[i].astype('float32')            yield split_dim_v, point_v, label    return pointDataGenerator
登录后复制
   

③定义网络

In [ ]
class ConvBNReLU(nn.Layer):
    def __init__(self,
                in_channels,
                out_channels,
                kernel_size,
                stride,
                padding='same',
                **kwargs):
        super().__init__()

        self._conv = nn.Conv1D(
            in_channels, out_channels, kernel_size, stride, padding=padding, **kwargs)

        self._batch_norm = nn.BatchNorm(out_channels)    def forward(self, x):
        x = self._conv(x)
        x = self._batch_norm(x)
        x = F.relu(x)        return x
登录后复制
   
In [ ]
class Downsample(nn.Layer):
    def __init__(self):
        super(Downsample, self).__init__()
        self.convbnrelu1 = ConvBNReLU(3, 32 * 3, 1, 1)
        self.convbnrelu2 = ConvBNReLU(32, 64 * 3, 1, 1)
        self.convbnrelu3 = ConvBNReLU(64, 256 * 3, 1, 1)
        self.convbnrelu4 = ConvBNReLU(256, 512 * 3, 1, 1)
        self.convbnrelu5 = ConvBNReLU(512, 1024 * 3, 1, 1)    def forward(self, x, split_dims_v):
        def kdconv(x, shortcut, dim, featdim, select, convbnrelu):
            shortcut.append(x)
            x = convbnrelu(x)
            x = paddle.reshape(x, (-1, featdim, 3, dim))
            x = paddle.reshape(x, (-1, featdim, 3 * dim))
            select = paddle.to_tensor(select) + (paddle.arange(0, dim) * 3)
            x = paddle.index_select(x, axis=2, index=select)
            x = paddle.reshape(x, (-1, featdim, int(dim / 2), 2))
            x = paddle.max(x, axis=-1)            return x, shortcut

        shortcut = []

        x, shortcut = kdconv(x, shortcut, 1024, 32, split_dims_v[0], self.convbnrelu1)
        x, shortcut = kdconv(x, shortcut, 512, 64, split_dims_v[1], self.convbnrelu2)
        x, shortcut = kdconv(x, shortcut, 256, 256, split_dims_v[2], self.convbnrelu3)
        x, shortcut = kdconv(x, shortcut, 128, 512, split_dims_v[3], self.convbnrelu4)
        x, shortcut = kdconv(x, shortcut, 64, 1024, split_dims_v[4], self.convbnrelu5)        return x, shortcut
登录后复制
   
In [ ]
class Upsample(nn.Layer):
    def __init__(self, k=50):
        super(Upsample, self).__init__()
        self.deconv1 = nn.Conv1DTranspose(1024, 512, 2, 2)
        self.doubleconv1 = nn.Sequential(
            ConvBNReLU(1024, 512, 1, 1),
            ConvBNReLU(512, 512, 1, 1))
        self.deconv2 = nn.Conv1DTranspose(512, 512, 2, 2)
        self.doubleconv2 = nn.Sequential(
            ConvBNReLU(768, 512, 1, 1),
            ConvBNReLU(512, 512, 1, 1))
        self.deconv3 = nn.Conv1DTranspose(512, 256, 2, 2)
        self.doubleconv3 = nn.Sequential(
            ConvBNReLU(320, 256, 1, 1),
            ConvBNReLU(256, 256, 1, 1))
        self.deconv4 = nn.Conv1DTranspose(256, 256, 2, 2)
        self.doubleconv4 = nn.Sequential(
            ConvBNReLU(288, 128, 1, 1),
            ConvBNReLU(128, 128, 1, 1))
        self.deconv5 = nn.Conv1DTranspose(128, 128, 2, 2)
        self.doubleconv5 = nn.Sequential(
            ConvBNReLU(131, 128, 1, 1),
            nn.Conv1D(128, k, 1, 1))    
    def forward(self, x, shortcut):
        x = self.deconv1(x)
        x = paddle.concat([x, shortcut[-1]], axis=1)
        x = self.doubleconv1(x)
        x = self.deconv2(x)
        x = paddle.concat([x, shortcut[-2]], axis=1)
        x = self.doubleconv2(x)
        x = self.deconv3(x)
        x = paddle.concat([x, shortcut[-3]], axis=1)
        x = self.doubleconv3(x)
        x = self.deconv4(x)
        x = paddle.concat([x, shortcut[-4]], axis=1)
        x = self.doubleconv4(x)
        x = self.deconv5(x)
        x = paddle.concat([x, shortcut[-5]], axis=1)
        x = self.doubleconv5(x)
        x = x.transpose((0, 2, 1))
        x = F.softmax(x, axis=-1)        return x
登录后复制
   
In [ ]
class KDNet(nn.Layer):
    def __init__(self, k=16):
        super(KDNet, self).__init__()
        self.downsample = Downsample()
        self.upsample = Upsample(k=50)    def forward(self, x, split_dims_v):
        x, shortcut = self.downsample(x, split_dims_v)
        x = self.upsample(x, shortcut)        return x
登录后复制
   

⑤训练

1、创建训练数据读取器

    注:由于训练数据预处理比较慢,所以先创建训练数据读取器(创建同时会对数据进行预处理),这样在训练时候直接导入就显得训练过程快很多(实际上并没有节省时间,只不过是为了调试方便和读者尝试,把训练数据读取器单独拿出来创建)。

       

In [ ]
train_loader = pointDataLoader(mode='train')
登录后复制
       
==========load over==========
登录后复制
       

2、开始训练

In [147]
def train():
    model = KDNet()
    model.train()
    optim = paddle.optimizer.Adam(parameters=model.parameters(), weight_decay=0.001)

    epoch_num = 100
    all_iou = 0
    for epoch in range(epoch_num):        for batch_id, data in enumerate(train_loader()):
            split_dims_v = data[0]
            points_v = data[1]
            labels = data[2]
            inputs = paddle.to_tensor(points_v)
            labels = paddle.to_tensor(labels)
            
            predict = model(inputs, split_dims_v)
            loss = F.cross_entropy(predict, labels)

            iou, _, _ = paddle.fluid.layers.mean_iou(paddle.unsqueeze(paddle.argmax(predict, axis=-1), axis=-1), labels, 50)       
            all_iou += iou            if batch_id % 100 == 0: 
                miou = all_iou / 100
                all_iou = 0
                print("epoch: {}, batch_id: {}, loss is: {}, miou is: {}".format(epoch, batch_id, loss.numpy(), miou.numpy()))

            loss.backward()
            optim.step()
            optim.clear_grad()        if epoch % 4 == 0:
            paddle.save(model.state_dict(), './model/KDNet.pdparams')
            paddle.save(optim.state_dict(), './model/KDNet.pdopt')if __name__ == '__main__':
    train()
登录后复制
   

⑥评估

1、创建评估数据读取器

In [151]
test_loader = pointDataLoader(mode='val')
登录后复制
       
==========load over==========
登录后复制
       

2、评估数据(原label)可视化

In [156]
def test():
    model = KDNet()
    model_state_dict = paddle.load('./model/KDNet.pdparams')
    model.load_dict(model_state_dict)    for batch_id, data in enumerate(test_loader()):
        split_dims_v = data[0]
        points_v = data[1]
        labels = data[2]
        inputs = paddle.to_tensor(points_v)
        predict = model(inputs, split_dims_v)       
        labels = paddle.to_tensor(labels)        break;
    
    zdata = []
    xdata = []
    ydata = []
    pre_label = []    for i in points_v[0].T:
        xdata.append(i[0])
        ydata.append(i[1])
        zdata.append(i[2])    for i in labels[0].numpy():
        pre_label.append(i[0])    print(np.argmax(np.array(pre_label)))
    map_color = {0:'r', 1:'g', 2:'b', 3:'y'}
    Color = list(map(lambda  x: map_color[x], pre_label))
    xdata = np.array(xdata)
    ydata = np.array(ydata)
    zdata = np.array(zdata)    from mpl_toolkits import mplot3d    import matplotlib.pyplot as plt

    ax = plt.axes(projection='3d')
    ax.scatter3D(xdata, ydata, zdata, c=Color)
    plt.show()if __name__ == '__main__':
    test()
登录后复制
       
208
登录后复制
       
<Figure size 432x288 with 1 Axes>
登录后复制
               

3、评估数据(预测)可视化

In [155]
def test():
    model = KDNet()
    model_state_dict = paddle.load('./model/KDNet.pdparams')
    model.load_dict(model_state_dict)    for batch_id, data in enumerate(test_loader()):
        split_dims_v = data[0]
        points_v = data[1]
        labels = data[2]
        inputs = paddle.to_tensor(points_v)
        predict = model(inputs, split_dims_v)       
        labels = paddle.to_tensor(labels)        break;
    
    zdata = []
    xdata = []
    ydata = []
    pre_label = []    for i in points_v[0].T:
        xdata.append(i[0])
        ydata.append(i[1])
        zdata.append(i[2])    for i in np.argmax(predict[0].numpy(), 1):
        pre_label.append(i)    print(np.argmax(np.array(pre_label)))
    map_color = {0:'r', 1:'g', 2:'b', 3:'y'}
    Color = list(map(lambda  x: map_color[x], pre_label))
    xdata = np.array(xdata)
    ydata = np.array(ydata)
    zdata = np.array(zdata)    from mpl_toolkits import mplot3d    import matplotlib.pyplot as plt

    ax = plt.axes(projection='3d')
    ax.scatter3D(xdata, ydata, zdata, c=Color)
    plt.show()if __name__ == '__main__':
    test()
登录后复制
       
208
登录后复制
       
<Figure size 432x288 with 1 Axes>
登录后复制
               

以上就是点云处理:基于Paddle2.0尝试提出Kd-Unet对点云进行分割处理的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号