基于PaddlePaddle2.0-构建门控循环单元模型

P粉084495128
发布: 2025-08-01 14:19:36
原创
197人浏览过
陆平在文中介绍基于PaddlePaddle2.0构建门控循环单元(GRU)模型的流程,GRU通过重置门与更新门选择性记忆时序信息,并给出相关公式。还以IMDB电影评论数据为例,构建模型进行情感倾向预测,经10轮训练,测试集准确率达84%至85%。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

基于paddlepaddle2.0-构建门控循环单元模型 - php中文网

基于PaddlePaddle2.0-构建门控循环单元模型

作者:陆平

1. 建模流程

相比于长短期记忆模型,门控循环单元(GRU)的门控机制更加简单,通过重置门与更新门来选择性记忆时序信息。

门控循环单元模型整体结构如下:

基于PaddlePaddle2.0-构建门控循环单元模型 - php中文网

重置门用来控制新记忆中包含上一时间步输出Ht1Ht−1的比例。给定一个大小为n的批量样本,输入特征数量为d,输出特征数量为q。时间步t的输入表示为XtRn×dXt∈Rn×d,批量化的输入特征与权重WtRd×qWt∈Rd×q相乘,再加上时间步t-1的输出特征Ht1Rn×qHt−1∈Rn×q与权重UtRq×qUt∈Rq×q乘积,之后用sigmoid函数进行激活,得到输出rtRn×qrt∈Rn×q为:

rt=σ(XtWr+Ht1Ur)rt=σ(XtWr+Ht−1Ur)

rtrt与Ht1UhHt−1Uh按元素相乘可以得到上一时间步输出信息保留量,时间步t的输入特征XtXt与权重WhRd×qWh∈Rd×q相乘得到当前时间步输入的线性转化,两者相加后接tanh函数激活,得到输出H~tRn×qH~t∈Rn×q,这代表新记忆。

H~t=tanh(rtHt1Uh+XtWh)H~t=tanh(rt⊙Ht−1Uh+XtWh)

硅基智能
硅基智能

基于Web3.0的元宇宙,去中心化的互联网,高质量、沉浸式元宇宙直播平台,用数字化重新定义直播

硅基智能62
查看详情 硅基智能

更新门用来控制门控循环单元输出中包含上一时间步输出Ht1Ht−1的比例。时间步t的输入XtRn×dXt∈Rn×d与权重WzRd×qWz∈Rd×q相乘,再加上时间步t-1的输出Ht1Ht−1与权重UzRq×qUz∈Rq×q乘积,之后用sigmoid函数进行激活,得到输出ztRn×qzt∈Rn×q为:

zt=σ(XtWz+Ht1Uz)zt=σ(XtWz+Ht−1Uz)

时间步t的单元输出HtHt是由新记忆H~tH~t与上一时间步的输出特征Ht1Ht−1的加权求和,输出HtRn×qHt∈Rn×q为:

Ht=(1zt)Ht1+ztH~tHt=(1−zt)⊙Ht−1+zt⊙H~t

2. 基于GRU模型的电影评论情感倾向预测

基于PaddlePaddle2.0基础API构建门控循环神经网络模型,利用互联网电影资料库Imdb数据来进行电影评论情感倾向预测

In [1]
import numpy as npimport paddle#准备数据#加载IMDB数据imdb_train = paddle.text.datasets.Imdb(mode='train') #训练数据集imdb_test = paddle.text.datasets.Imdb(mode='test') #测试数据集#获取字典word_dict = imdb_train.word_idx#在字典中增加一个<pad>字符串word_dict['<pad>'] = len(word_dict)

vocab_size = len(word_dict)
embedding_size = 256hidden_size = 256n_layers = 2dropout = 0.5seq_len = 200batch_size = 64epochs = 10pad_id = word_dict['<pad>']def padding(dataset):
    padded_sents = []
    labels = []    for batch_id, data in enumerate(dataset):
        sent, label = data[0].astype('int64'), data[1].astype('int64')
        padded_sent = np.concatenate([sent[:seq_len], [pad_id] * (seq_len - len(sent))]).astype('int64')
        padded_sents.append(padded_sent)
        labels.append(label)    return np.array(padded_sents), np.array(labels)

train_x, train_y = padding(imdb_train)
test_x, test_y = padding(imdb_test)    
class IMDBDataset(paddle.io.Dataset):
    def __init__(self, sents, labels):
        self.sents = sents
        self.labels = labels    def __getitem__(self, index):
        data = self.sents[index]
        label = self.labels[index]        return data, label    def __len__(self):
        return len(self.sents)

train_dataset = IMDBDataset(train_x, train_y)
test_dataset = IMDBDataset(test_x, test_y)

train_loader = paddle.io.DataLoader(train_dataset, return_list=True, shuffle=True, batch_size=batch_size, drop_last=True)
test_loader = paddle.io.DataLoader(test_dataset, return_list=True, shuffle=True, batch_size=batch_size, drop_last=True)#构建模型class GRUModel(paddle.nn.Layer):
    def __init__(self):
        super(GRUModel, self).__init__()
        self.embedding = paddle.nn.Embedding(vocab_size, embedding_size)
        self.gru_layer = paddle.nn.GRU(embedding_size, 
                                         hidden_size, 
                                         num_layers=n_layers, 
                                         direction='bidirectional', 
                                         dropout=dropout)
        self.linear = paddle.nn.Linear(in_features=hidden_size * 2, out_features=2)
        self.dropout = paddle.nn.Dropout(dropout)        
    def forward(self, text):
        #输入text形状大小为[batch_size, seq_len]
        embedded = self.dropout(self.embedding(text))        #embedded形状大小为[batch_size, seq_len, embedding_size]
        output, hidden = self.gru_layer(embedded)        #output形状大小为[batch_size,seq_len,num_directions * hidden_size]
        #hidden形状大小为[num_layers * num_directions, batch_size, hidden_size]
        #把前向的hidden与后向的hidden合并在一起
        hidden = paddle.concat((hidden[-2,:,:], hidden[-1,:,:]), axis = 1)
        hidden = self.dropout(hidden)        #hidden形状大小为[batch_size, hidden_size * num_directions]
        return self.linear(hidden)

model = paddle.Model(GRUModel()) #PaddlePaddle2.0高层API,需要用Model封装模型#模型配置model.prepare(paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()),
              paddle.nn.CrossEntropyLoss(),
              paddle.metric.Accuracy())#模型训练model.fit(train_loader,
          test_loader,
          epochs=epochs,
          batch_size=batch_size,
          verbose=1)
登录后复制
Cache file /home/aistudio/.cache/paddle/dataset/imdb/imdb%2FaclImdb_v1.tar.gz not found, downloading https://dataset.bj.bcebos.com/imdb%2FaclImdb_v1.tar.gz 
Begin to download

Download finished
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/distributed/parallel.py:119: UserWarning: Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything.
  "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:77: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated, and in 3.8 it will stop working
  return (isinstance(seq, collections.Sequence) and
登录后复制
The loss value printed in the log is the current step, and the metric is the average value of previous step.
Epoch 1/10
step 390/390 [==============================] - loss: 0.4013 - acc: 0.7027 - 46ms/step        
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3364 - acc: 0.8394 - 18ms/step        
Eval samples: 24960
Epoch 2/10
step 390/390 [==============================] - loss: 0.2342 - acc: 0.8760 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3898 - acc: 0.8710 - 18ms/step        
Eval samples: 24960
Epoch 3/10
step 390/390 [==============================] - loss: 0.3563 - acc: 0.9151 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3252 - acc: 0.8697 - 18ms/step        
Eval samples: 24960
Epoch 4/10
step 390/390 [==============================] - loss: 0.2071 - acc: 0.9355 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.5057 - acc: 0.8571 - 19ms/step        
Eval samples: 24960
Epoch 5/10
step 390/390 [==============================] - loss: 0.1606 - acc: 0.9505 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.4060 - acc: 0.8417 - 19ms/step        
Eval samples: 24960
Epoch 6/10
step 390/390 [==============================] - loss: 0.2904 - acc: 0.9646 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.4060 - acc: 0.8482 - 18ms/step        
Eval samples: 24960
Epoch 7/10
step 390/390 [==============================] - loss: 0.1081 - acc: 0.9702 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.5072 - acc: 0.8516 - 18ms/step        
Eval samples: 24960
Epoch 8/10
step 390/390 [==============================] - loss: 0.0677 - acc: 0.9764 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.3075 - acc: 0.8509 - 18ms/step        
Eval samples: 24960
Epoch 9/10
step 390/390 [==============================] - loss: 0.1687 - acc: 0.9797 - 44ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.6582 - acc: 0.8468 - 19ms/step        
Eval samples: 24960
Epoch 10/10
step 390/390 [==============================] - loss: 0.0149 - acc: 0.9835 - 45ms/step         
Eval begin...
The loss value printed in the log is the current batch, and the metric is the average value of previous step.
step 390/390 [==============================] - loss: 0.5828 - acc: 0.8450 - 18ms/step        
Eval samples: 24960
登录后复制

经过10轮epoch训练,模型在测试数据集上的准确率大约为84%至85%。

以上就是基于PaddlePaddle2.0-构建门控循环单元模型的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号