个人实现的反向文心(无需训练的AI看图说话,你不心动?)

P粉084495128
发布: 2025-07-16 13:43:35
原创
229人浏览过
本文介绍ZeroCap的中文Paddle迁移实现,这是一个零样本图像描述模型。项目用Ernie-VIL替换原论文的CLIP,GPT采用中文版,涉及GPTChineseTokenizer、GPTLMHeadModel等模型。代码包含安装库、模型初始化、定义相关函数及生成文本等内容,还展示了效果示例,适合想了解深度学习Image Caption的新手,可参考相关B站科普视频。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

个人实现的反向文心(无需训练的ai看图说话,你不心动?) - php中文网

ZeroCap:zero shot的image caption模型paddle迁移实现(中文版)

论文:ZeroCap: Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic ,2022.3.31

代码: https://github.com/YoadTew/zero-shot-image-to-text

英文Paddle实现(对于zerpcap论文个人讲解也可参考该AI Studio项目) : ZeroCap

对深度学习 Image Caption 什么都不太了解 但是很想去了解学习 的同学可以看看我做的这个B站视频:

用大白话讲Paper之Image caption ZeroCap,科普视频,不想学的请直接划走

这个视频我真的尽可能用大白话去把一个个概念用最朴素的语言讲了出来,麻烦各位看官动动你们的小手为我可怜的视频增加点播放量,谢谢大家

超级 超级 推荐新手观看上面这个B站视频!!!!

个人实现的反向文心(无需训练的AI看图说话,你不心动?) - php中文网

本项目使用以下模型:

文心一言
文心一言

文心一言是百度开发的AI聊天机器人,通过对话可以生成各种形式的内容。

文心一言1008
查看详情 文心一言

GPTChineseTokenizer,GPTLMHeadModel,ErnieViLProcessor, ErnieViLModel. Ernie-VIL替换原论文英文版的CLIP,然后GPT使用中文版

from paddlenlp.transformers import GPTChineseTokenizer,GPTLMHeadModelfrom paddlenlp.transformers import ErnieViLProcessor, ErnieViLModel
登录后复制

效果展示:

  1. input:

个人实现的反向文心(无需训练的AI看图说话,你不心动?) - php中文网

output: 这张图片讲的故事是猫躲帐


  1. input:

个人实现的反向文心(无需训练的AI看图说话,你不心动?) - php中文网

output: 这张图片讲的故事是小狗Jack在草地上.


  1. input:

个人实现的反向文心(无需训练的AI看图说话,你不心动?) - php中文网

output: 这张图片讲的故事是梅西在运球的时候

In [ ]
#安装库!pip install --upgrade pip
!pip uninstall paddlenlp -y
!pip install paddlenlp==2.4.1!pip install regex
!pip install fastcore
登录后复制
In [2]
import paddlenlp.transformers.clip as clipfrom paddlenlp.transformers import GPTLMHeadModel as GPT2LMHeadModel,GPTTokenizer as GPT2Tokenizerimport paddleimport paddle.nn as nnfrom paddlenlp.transformers import CLIPProcessor, CLIPModelfrom PIL import Imageimport numpy as npimport collectionsfrom paddlenlp.data import Padfrom paddlenlp.transformers import ErnieViLTokenizer#测试ErnieViLTokenizer使用tokenizer = ErnieViLTokenizer.from_pretrained('ernie_vil-2.0-base-zh')print(tokenizer('我爱你宝贝'))
登录后复制
[2023-01-29 03:28:12,985] [    INFO] - Downloading https://bj.bcebos.com/paddlenlp/models/transformers/ernie_vil/ernie_vil-2.0-base-zh/vocab.txt and saved to /home/aistudio/.paddlenlp/models/ernie_vil-2.0-base-zh
[2023-01-29 03:28:12,989] [    INFO] - Downloading vocab.txt from https://bj.bcebos.com/paddlenlp/models/transformers/ernie_vil/ernie_vil-2.0-base-zh/vocab.txt
100%|██████████| 182k/182k [00:00<00:00, 3.23MB/s]
[2023-01-29 03:28:13,209] [    INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie_vil-2.0-base-zh/tokenizer_config.json
[2023-01-29 03:28:13,212] [    INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie_vil-2.0-base-zh/special_tokens_map.json
登录后复制
{'input_ids': [1, 75, 329, 226, 707, 1358, 2]}
登录后复制
In [3]
import paddlenlp.transformers.clip as clipfrom paddlenlp.transformers import GPTChineseTokenizer,GPTLMHeadModelimport paddle# from paddlenlp.transformers import ErnieForGenerationimport paddle.nn as nnfrom paddlenlp.transformers import ErnieViLProcessor, ErnieViLModelfrom PIL import Imageimport numpy as npimport collectionsfrom paddlenlp.data import Padfrom paddlenlp.transformers import ErnieViLTokenizer
tokenizer = ErnieViLTokenizer.from_pretrained('ernie_vil-2.0-base-zh')print(tokenizer('我爱你宝贝'))from fastcore.all import *@patch_to(GPTChineseTokenizer)def convert_ids_to_tokens(self, ids, skip_special_tokens=False):
    if not isinstance(ids, (list, tuple)):        return self._convert_id_to_token(ids)
    tokens = [self._convert_id_to_token(_id) for _id in ids]    if skip_special_tokens:        return [
            token for token in tokens            if token not in self.all_special_tokens
        ]    return tokensdef add_context0(x, y):
    return (x[0] + y[0], x[1] + y[1])def add_context(x, y):
    a = x.__class__(k=(x.k+y[0]),v = (x.v+y[1]))    return afrom datetime import datetimeimport sysdef log_info(text, verbose=True):
    if verbose:
        dt_string = datetime.now().strftime("%d/%m/%Y %H:%M:%S")        print(f'{dt_string} | {text}')
        sys.stdout.flush()# def add_context(x, y):#     # print(x.__class__,x)#     Cache = collections.namedtuple("Cache","k,v")#     a = Cache(k=(x.k+y[0]).mean(axis = 2,keepdim = True),v = (x.v+y[1]).mean(axis = 2,keepdim = True))#     return aclass CLIPTextGenerator:
    def __init__(self,
                 seed=0,
                 lm_model='gpt-2',
                 forbidden_tokens_file_path='./forbidden_tokens.npy',
                 clip_checkpoints='./clip_checkpoints',
                 target_seq_length=50,
                 reset_context_delta=True,
                 num_iterations=5,
                 clip_loss_temperature=0.01,
                 clip_scale=1.,
                 ce_scale=0.2,#0.2
                 stepsize=0.3,
                 grad_norm_factor=0.9,
                 fusion_factor=0.99,
                 repetition_penalty=1.,
                 end_token='。',
                 end_factor=1.01,
                 forbidden_factor=20,
                 **kwargs):


        # set Random seed
        paddle.seed(seed)
        np.random.seed(seed)        # Initialize Language model
        self.context_prefix = ''

        self.lm_tokenizer = GPTChineseTokenizer.from_pretrained('gpt-cpm-large-cn')
        self.lm_model = GPTLMHeadModel.from_pretrained("gpt-cpm-large-cn")        # self.context_prefix = self.lm_tokenizer.bos_token

        self.lm_model.eval()

        self.forbidden_tokens = np.load(forbidden_tokens_file_path)    #     # Freeze LM weights
        for param in self.lm_model.parameters():
            param.requires_grad = False

    #     # Initialize CLIP
        self.clip = ErnieViLModel.from_pretrained("ernie_vil-2.0-base-zh")
        self.clip_preprocess = ErnieViLProcessor.from_pretrained("ernie_vil-2.0-base-zh")    #     # convert_models_to_fp32(self.clip)

    #     # Init arguments
        self.target_seq_length = target_seq_length
        self.reset_context_delta = reset_context_delta
        self.num_iterations = num_iterations
        self.clip_loss_temperature = clip_loss_temperature
        self.clip_scale = clip_scale
        self.ce_scale = ce_scale
        self.stepsize = stepsize
        self.grad_norm_factor = grad_norm_factor
        self.fusion_factor = fusion_factor
        self.repetition_penalty = repetition_penalty        # self.end_token = self.lm_tokenizer.encode(end_token)[0]
        self.end_token = self.lm_tokenizer.encode(end_token)["input_ids"][0]
        self.end_factor = end_factor
        self.ef_idx = 1
        self.forbidden_factor = forbidden_factor    def get_img_feature(self, img_path, weights = None):
        imgs = [Image.open(x) for x in img_path]        # print("imgs",imgs)
        clip_imgs = [self.clip_preprocess(images = x,return_tensors="pd")["pixel_values"] for x in imgs]        with paddle.no_grad():
            image_fts = [self.clip.get_image_features(x) for x in clip_imgs]            # print("image_fts",image_fts)

            if weights is not None:
                image_features = sum([x * weights[i] for i, x in enumerate(image_fts)])            else:
                image_features = sum(image_fts)

            image_features = image_features / image_features.norm(axis=-1, keepdim=True)            return image_features.detach()    def get_txt_features(self, text):
        # print("text",text)
        clip_texts = tokenizer(text)
        clip_texts = Pad(pad_val=0)(clip_texts["input_ids"])
        clip_texts = paddle.to_tensor(clip_texts)        # clip_texts = clip.tokenize(text)
        # print("clip_text",clip_texts)


        with paddle.no_grad():
            text_features = self.clip.get_text_features(clip_texts)

            text_features = text_features / text_features.norm(axis=-1, keepdim=True)        return text_features.detach()    def run(self, image_features, cond_text, beam_size):
        self.image_features = image_features

        context_tokens = self.lm_tokenizer.encode(self.context_prefix + cond_text)        # print("context_tokens0",context_tokens)

        output_tokens, output_text = self.generate_text(context_tokens["input_ids"], beam_size)        return output_text    def generate_text(self, context_tokens, beam_size):
        context_tokens = paddle.to_tensor(context_tokens).unsqueeze(0)        print("158context_tokens",context_tokens)

        gen_tokens = None
        scores = None
        seq_lengths = paddle.ones([beam_size])
        is_stopped = paddle.zeros([beam_size], dtype=paddle.bool)        for i in range(self.target_seq_length):            # print("146行")
            probs = self.get_next_probs(i, context_tokens)
            logits = probs.log()            if scores is None:
                scores, next_tokens = logits.topk(beam_size, -1)
                context_tokens = context_tokens.expand([beam_size, *context_tokens.shape[1:]])                # print(next_tokens.shape)
                next_tokens, scores = next_tokens.transpose([1, 0]), scores.squeeze(0)                if gen_tokens is None:
                    gen_tokens = next_tokens                else:
                    gen_tokens = gen_tokens.expand(beam_size, *gen_tokens.shape[1:])
                    gen_tokens = paddle.concat((gen_tokens, next_tokens), axis=1)            else:                # print("logits",logits.shape)
                # print("is_stopped",is_stopped)
                # print("i",i)
                logits[is_stopped] = -float(np.inf)
                logits[is_stopped, 0] = 0
                scores_sum = scores[:, None] + logits
                seq_lengths[~is_stopped] += 1
                scores_sum_average = scores_sum / seq_lengths[:, None]
                scores_sum_average, next_tokens = scores_sum_average.reshape([-1]).topk(
                    beam_size, -1)
                next_tokens_source = next_tokens // scores_sum.shape[1]
                seq_lengths = seq_lengths[next_tokens_source]
                next_tokens = next_tokens % scores_sum.shape[1]
                next_tokens = next_tokens.unsqueeze(1)
                gen_tokens = gen_tokens[next_tokens_source]
                gen_tokens = paddle.concat((gen_tokens, next_tokens), axis=-1)
                context_tokens = context_tokens[next_tokens_source]
                scores = scores_sum_average * seq_lengths                # print("is_stopped",is_stopped,"next_tokens_source",next_tokens_source)
                # is_stopped = is_stopped[next_tokens_source]
                is_stopped = is_stopped[list(map(int,list(next_tokens_source.numpy())))]

            context_tokens = paddle.concat((context_tokens, next_tokens), axis=1)            # print("next_tokens",next_tokens)
            # print("is_stopped",is_stopped)
            temp_a = next_tokens.equal(paddle.full_like(next_tokens,self.end_token)).astype("float32").squeeze()            # print(temp_a)
            # is_stopped = is_stopped + next_tokens.equal(self.end_token).astype("float32").squeeze()
            # is_stopped = is_stopped + next_tokens.equal(paddle.full_like(next_tokens,self.end_token)).astype("float32").squeeze()
            is_stopped = paddle.any(paddle.stack([is_stopped.astype("float32"),temp_a],axis=0).astype("bool"),axis=0)            # print("is_stopped",is_stopped)
            

            ####
            tmp_scores = scores / seq_lengths
            tmp_output_list = gen_tokens.numpy()
            tmp_output_texts = [self.lm_tokenizer.convert_ids_to_string(list(map(int,list(tmp_output)))) for tmp_output, tmp_length in zip(tmp_output_list, seq_lengths)]
            tmp_order = tmp_scores.argsort(descending=True)
            tmp_output_texts = [tmp_output_texts[i] + ' %% ' + str(tmp_scores[i].numpy()) for i in tmp_order]
            log_info(tmp_output_texts, verbose=True)            ####

            if is_stopped.all():                break

        scores = scores / seq_lengths
        output_list = gen_tokens.numpy()
        output_texts = [
            self.lm_tokenizer.convert_ids_to_string(list(map(int,list(output[: int(length)]))))            for output, length in zip(output_list, seq_lengths)
        ]
        order = scores.argsort(descending=True)
        output_texts = [output_texts[i] for i in order]        return context_tokens, output_texts    def get_next_probs(self, i, context_tokens):
        last_token = context_tokens[:, -1:]        if self.reset_context_delta and context_tokens.shape[1] > 1:            # print(context_tokens[:, :-1])
            # print(self.lm_model(context_tokens[:, :-1],use_cache=True))
            context = self.lm_model(context_tokens[:, :-1],use_cache=True)[1] #得到k v
            # print("context180",context)
        # Logits of LM with unshifted context
        logits_before_shift = self.lm_model(context_tokens)        # print("220row",logits_before_shift.shape)
        logits_before_shift = logits_before_shift[:, -1, :]
        probs_before_shift = nn.functional.softmax(logits_before_shift, axis=-1).detach()        if context:
            context = self.shift_context(i, context, last_token, context_tokens, probs_before_shift)

        lm_output = self.lm_model(last_token, cache=context,use_cache=True)
        logits, past = (
            lm_output[0],
            lm_output[1],
        )
        logits = logits[:, -1, :]        # logits = self.update_special_tokens_logits(context_tokens, i, logits)

        probs = nn.functional.softmax(logits, axis=-1)
        probs = (probs ** self.fusion_factor) * (probs_before_shift ** (1 - self.fusion_factor))
        probs = probs / probs.sum()        return probs    def shift_context(self, i, context, last_token, context_tokens, probs_before_shift):
        context_delta = [tuple([np.zeros(x.shape).astype("float32") for x in p]) for p in context]        # context_delta = [ for p in context]

        window_mask = paddle.ones_like(context[0][0])        for i in range(self.num_iterations):
            curr_shift = [tuple([paddle.to_tensor(x,stop_gradient = False) for x in p_]) for p_ in
                            context_delta]            # for p0, p1 in curr_shift:
            #     # p0.retain_grad()
            #     # p1.retain_grad()


            # print("context220",len(cond_text),context)
            shifted_context = list(map(add_context, context, curr_shift))            # print(last_token,len(shifted_context))
            # print(shifted_context)
            shifted_outputs = self.lm_model(last_token, cache=shifted_context,use_cache = True)            # logits = shifted_outputs["logits"][:, -1, :]
            logits = shifted_outputs[0][:, -1, :]

            probs = nn.functional.softmax(logits, axis=-1)

            loss = 0.0

            # CLIP LOSS
            clip_loss, clip_losses = self.clip_loss(probs, context_tokens)
            loss += self.clip_scale * clip_loss            # CE/Fluency loss
            if isinstance(self.ce_scale,float):
                ce_loss = self.ce_scale * ((probs * probs.log()) - (probs * probs_before_shift.log())).sum(-1)            else:
                a = self.ce_scale[0]
                b = self.ce_scale[1]
                ce_loss = (b - (b-a)/self.num_iterations*i) * ((probs * probs.log()) - (probs * probs_before_shift.log())).sum(-1)

            loss += ce_loss.sum()

            loss.backward()            # print("loss finish")

            # ---------- Weights ----------
            combined_scores_k = -(ce_loss)
            combined_scores_c = -(self.clip_scale * paddle.stack(clip_losses)).squeeze(1)            # print(295,"combined_scores_k",combined_scores_k.shape,"combined_scores_c",combined_scores_c.shape)

            # minmax
            if combined_scores_k.shape[0] == 1:
                tmp_weights_c = tmp_weights_k = paddle.ones(combined_scores_k.shape)            else:
                tmp_weights_k = ((combined_scores_k - combined_scores_k.min())) / (combined_scores_k.max() - combined_scores_k.min())
                tmp_weights_c = ((combined_scores_c - combined_scores_c.min())) / (combined_scores_c.max() - combined_scores_c.min())            # print(tmp_weights_k)
            tmp_weights = 0.5 * tmp_weights_k + 0.5 * tmp_weights_c            # print("305 tmp_weights",tmp_weights.shape)
            
            tmp_weights = tmp_weights.reshape([tmp_weights.shape[0], 1, 1, 1])

            factor = 1

            # --------- Specific Gen ---------
            sep_grads = None

            for b in range(context_tokens.shape[0]):
                tmp_sep_norms = [[(paddle.norm(x.grad[b:(b + 1)] * window_mask[b:(b + 1)]) + 1e-15) for x in p_]                                    for p_ in curr_shift]                # normalize gradients
                tmp_grad = [tuple([-self.stepsize * factor * (
                        x.grad[b:(b + 1)] * window_mask[b:(b + 1)] / tmp_sep_norms[i][
                    j] ** self.grad_norm_factor).numpy()                                    for j, x in enumerate(p_)])                            for i, p_ in enumerate(curr_shift)]                if sep_grads is None:
                    sep_grads = tmp_grad                else:                    for l_index in range(len(sep_grads)):
                        sep_grads[l_index] = list(sep_grads[l_index])                        for k_index in range(len(sep_grads[0])):
                            sep_grads[l_index][k_index] = np.concatenate(
                                (sep_grads[l_index][k_index], tmp_grad[l_index][k_index]), axis=0)
                        sep_grads[l_index] = tuple(sep_grads[l_index])
            final_grads = sep_grads            # --------- update context ---------
            context_delta = list(map(add_context0, final_grads, context_delta))            # print("curr_shift",len(curr_shift),curr_shift[0])

            for p0, p1 in curr_shift:                # print(p0.grad)
                p0.stop_gradient = True
                p1.stop_gradient = True
                p0.grad.zero_()
                p1.grad.zero_()
                p0.stop_gradient = False
                p1.stop_gradient = False
            # with paddle.no_grad():
            #     for p0, p1 in curr_shift:
            #         p0.grad.zero_()
            #         p1.grad.zero_()
            
            new_context = []            for p0, p1 in context:                # new_context.append((p0.detach(), p1.detach()))
                new_context.append(shifted_outputs[1][0].__class__(p0.detach(), p1.detach()))
            context = new_context

        context_delta = [tuple([paddle.to_tensor(x,stop_gradient = False) for x in p_])                            for p_ in context_delta]
        context = list(map(add_context, context, context_delta))

        new_context = []        for p0, p1 in context:
            p0 = p0.detach()
            p0.stop_gradient = False
            p1 = p1.detach()
            p1.stop_gradient = False
            # new_context.append((p0, p1))
            new_context.append(shifted_outputs[1][0].__class__(p0, p1))
        context = new_context        return context    def update_special_tokens_logits(self, context_tokens, i, logits):
        for beam_id in range(context_tokens.shape[0]):            for token_idx in set(context_tokens[beam_id][-4:].tolist()):
                factor = self.repetition_penalty if logits[beam_id, token_idx] > 0 else (1 / self.repetition_penalty)
                logits[beam_id, token_idx] /= factor            if i >= self.ef_idx:
                factor = self.end_factor if logits[beam_id, self.end_token] > 0 else (1 / self.end_factor)
                logits[beam_id, self.end_token] *= factor            if i == 0:
                start_factor = 1.6
                factor = start_factor if logits[beam_id, self.end_token] > 0 else (1 / start_factor)
                logits[beam_id, self.end_token] /= factor            for token_idx in list(self.forbidden_tokens):
                factor = self.forbidden_factor if logits[beam_id, token_idx] > 0 else (1 / self.forbidden_factor)
                logits[beam_id, token_idx] /= factor        return logits    def clip_loss(self, probs, context_tokens):
        for p_ in self.clip.text_model.parameters():            if p_.grad is not None:
                p_.grad.data.zero_()

        top_size = 512
        _, top_indices = probs.topk(top_size, -1)        # print("417",context_tokens[0])
        # print("418",self.lm_tokenizer.decode(context_tokens[0]))
        # prefix_texts = [self.lm_tokenizer.decode(x).replace(self.lm_tokenizer.bos_token, '') for x in context_tokens]
        prefix_texts = [self.lm_tokenizer.convert_ids_to_string(list(map(int,list(x.numpy())))) for x in context_tokens]        # print(422,prefix_texts)

        clip_loss = 0
        losses = []        for idx_p in range(probs.shape[0]):
            top_texts = []
            prefix_text = prefix_texts[idx_p]            for x in top_indices[idx_p]:
                top_texts.append(prefix_text + self.lm_tokenizer.convert_ids_to_string(list(map(int,list(x.numpy())))))
            text_features = self.get_txt_features(top_texts)            with paddle.no_grad():
                similiraties = (self.image_features @ text_features.T)
                target_probs = nn.functional.softmax(similiraties / self.clip_loss_temperature, axis=-1).detach()                # print("target_probs",target_probs)
                target_probs = target_probs.astype(paddle.float32)



            target = paddle.zeros_like(probs[idx_p])
            target.stop_gradient = True
            # print("target_probs",target_probs.shape,target_probs.stop_gradient)
            # print("top_indices",top_indices.stop_gradient,"idx_p",idx_p)
            # print("target",target.stop_gradient)
            target[top_indices[idx_p]] = target_probs[0]
            target = target.unsqueeze(0)
            cur_clip_loss = paddle.sum(-(target * paddle.log(probs[idx_p:(idx_p + 1)])))

            clip_loss += cur_clip_loss
            losses.append(cur_clip_loss)        return clip_loss, losses    
# text_generator = CLIPTextGenerator()# image_features = text_generator.get_img_feature(["微信图片_20221026225709.jpg"])# cond_text = "Image of a"# beam_size = 5# text_generator.run(image_features,cond_text,beam_size)
登录后复制
[2023-01-29 03:28:13,274] [    INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie_vil-2.0-base-zh/vocab.txt
[2023-01-29 03:28:13,302] [    INFO] - tokenizer config file saved in /home/aistudio/.paddlenlp/models/ernie_vil-2.0-base-zh/tokenizer_config.json
[2023-01-29 03:28:13,305] [    INFO] - Special tokens file saved in /home/aistudio/.paddlenlp/models/ernie_vil-2.0-base-zh/special_tokens_map.json
登录后复制
{'input_ids': [1, 75, 329, 226, 707, 1358, 2]}
登录后复制
In [ ]
image_path = "微信图片_20221026225709.jpg" #请修改对应图片路径text_generator = CLIPTextGenerator(ce_scale=0.2)
image_features = text_generator.get_img_feature([image_path])#输入图片路径地址cond_text = "这张图片讲的故事是"# cond_text = "这张图片描述的是(详细描述):"beam_size = 5captions = text_generator.run(image_features,cond_text,beam_size)

encoded_captions = [text_generator.clip.get_text_features(paddle.to_tensor(tokenizer(c)["input_ids"]).unsqueeze(0)) for c in captions]
encoded_captions = [x / x.norm(axis=-1, keepdim=True) for x in encoded_captions]
best_clip_idx = (paddle.concat(encoded_captions) @ image_features.t()).squeeze().argmax().item()print(captions)print('best clip:', cond_text + captions[best_clip_idx])
登录后复制

以上就是个人实现的反向文心(无需训练的AI看图说话,你不心动?)的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习
PHP中文网抖音号
发现有趣的

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号