CycleMLP是用于视觉识别和密集预测的通用主干,相较MLP Mixer等模型,能处理不同图像大小,以线性计算复杂度实现局部窗口操作。其核心是Cycle FC,结合并行算子与Channel MLP,有5种模型。在ImageNet - 1K和ADE20K上表现优异,参数和计算量更少。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜





!pip install paddlepaddle-gpu==2.1.1.post101 -f https://paddlepaddle.org.cn/whl/mkl/stable.html
import osimport mathimport paddleimport paddle.nn as nnfrom common import DropPath, Identityfrom common import add_parameter, _calculate_fan_in_and_fan_out, to_2tuplefrom common import zeros_, ones_, trunc_normal_from paddle.vision.ops import deform_conv2dfrom paddle.nn.initializer import Uniform, KaimingNormal
class Mlp(nn.Layer):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop) def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x) return xclass CycleFC(nn.Layer):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size, # re-defined kernel_size, represent the spatial area of staircase FC
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True, ):
super(CycleFC, self).__init__() if in_channels % groups != 0: raise ValueError('in_channels must be divisible by groups') if out_channels % groups != 0: raise ValueError('out_channels must be divisible by groups') if stride != 1: raise ValueError('stride must be 1') if padding != 0: raise ValueError('padding must be 0')
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = to_2tuple(stride)
self.padding = to_2tuple(padding)
self.dilation = to_2tuple(dilation)
self.groups = groups
self.weight = add_parameter(self, paddle.empty((out_channels, in_channels // groups, 1, 1))) # kernel size == 1
if bias:
self.bias = add_parameter(self, paddle.empty((out_channels,))) else:
self.add_parameter('bias', None)
self.register_buffer('offset', self.gen_offset())
self.reset_parameters() def reset_parameters(self) -> None:
KaimingNormal(self.weight) if self.bias is not None:
fan_in, _ = _calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
Uniform(low=-bound, high=bound)(self.bias) def gen_offset(self):
"""
offset (Tensor[batch_size, 2 * offset_groups * kernel_height * kernel_width,
out_height, out_width]): offsets to be applied for each position in the
convolution kernel.
"""
offset = paddle.empty((1, self.in_channels*2, 1, 1))
start_idx = (self.kernel_size[0] * self.kernel_size[1]) // 2
assert self.kernel_size[0] == 1 or self.kernel_size[1] == 1, self.kernel_size for i in range(self.in_channels): if self.kernel_size[0] == 1:
offset[0, 2 * i + 0, 0, 0] = 0
offset[0, 2 * i + 1, 0, 0] = (i + start_idx) % self.kernel_size[1] - (self.kernel_size[1] // 2) else:
offset[0, 2 * i + 0, 0, 0] = (i + start_idx) % self.kernel_size[0] - (self.kernel_size[0] // 2)
offset[0, 2 * i + 1, 0, 0] = 0
return offset def forward(self, input):
"""
Args:
input (Tensor[batch_size, in_channels, in_height, in_width]): input tensor
"""
B, C, H, W = input.shape return deform_conv2d(input, self.offset.expand((B, -1, H, W)), self.weight, self.bias, stride=self.stride,
padding=self.padding, dilation=self.dilation, deformable_groups=self.in_channels)class CycleMLP(nn.Layer):
def __init__(self, dim, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.mlp_c = nn.Linear(dim, dim, bias_attr=qkv_bias)
self.sfc_h = CycleFC(dim, dim, (1, 3), 1, 0)
self.sfc_w = CycleFC(dim, dim, (3, 1), 1, 0)
self.reweight = Mlp(dim, dim // 4, dim * 3)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop) def forward(self, x):
B, H, W, C = x.shape
h = self.sfc_h(x.transpose((0, 3, 1, 2))).transpose((0, 2, 3, 1))
w = self.sfc_w(x.transpose((0, 3, 1, 2))).transpose((0, 2, 3, 1))
c = self.mlp_c(x)
a = (h + w + c).transpose((0, 3, 1, 2)).flatten(2).mean(2)
a = nn.functional.softmax(self.reweight(a).reshape((B, C, 3)).transpose((2, 0, 1)), axis=0).unsqueeze(2).unsqueeze(2)
x = h * a[0] + w * a[1] + c * a[2]
x = self.proj(x)
x = self.proj_drop(x) return xclass CycleBlock(nn.Layer):
def __init__(self, dim, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip_lam=1.0, mlp_fn=CycleMLP):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = mlp_fn(dim, qkv_bias=qkv_bias, qk_scale=None, attn_drop=attn_drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
self.skip_lam = skip_lam def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))) / self.skip_lam
x = x + self.drop_path(self.mlp(self.norm2(x))) / self.skip_lam return xclass PatchEmbedOverlapping(nn.Layer):
""" 2D Image to Patch Embedding with overlapping
"""
def __init__(self, patch_size=16, stride=16, padding=0, in_chans=3, embed_dim=768, norm_layer=None, groups=1):
super().__init__()
patch_size = to_2tuple(patch_size)
stride = to_2tuple(stride)
padding = to_2tuple(padding)
self.patch_size = patch_size # remove image_size in model init to support dynamic image size
self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding, groups=groups)
self.norm = norm_layer(embed_dim) if norm_layer else Identity() def forward(self, x):
x = self.proj(x) return xclass Downsample(nn.Layer):
""" Downsample transition stage
"""
def __init__(self, in_embed_dim, out_embed_dim, patch_size):
super().__init__() assert patch_size == 2, patch_size
self.proj = nn.Conv2D(in_embed_dim, out_embed_dim, kernel_size=(3, 3), stride=(2, 2), padding=1) def forward(self, x):
x = x.transpose((0, 3, 1, 2))
x = self.proj(x) # B, C, H, W
x = x.transpose((0, 2, 3, 1)) return xdef basic_blocks(dim, index, layers, mlp_ratio=3., qkv_bias=False, qk_scale=None, attn_drop=0.,
drop_path_rate=0., skip_lam=1.0, mlp_fn=CycleMLP, **kwargs):
blocks = [] for block_idx in range(layers[index]):
block_dpr = drop_path_rate * (block_idx + sum(layers[:index])) / (sum(layers) - 1)
blocks.append(CycleBlock(dim, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, drop_path=block_dpr, skip_lam=skip_lam, mlp_fn=mlp_fn))
blocks = nn.Sequential(*blocks) return blocksclass CycleNet(nn.Layer):
""" CycleMLP Network """
def __init__(self, layers, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dims=None, transitions=None, segment_dim=None, mlp_ratios=None, skip_lam=1.0,
qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.,
norm_layer=nn.LayerNorm, mlp_fn=CycleMLP, fork_feat=False):
super().__init__() if not fork_feat:
self.num_classes = num_classes
self.fork_feat = fork_feat
self.patch_embed = PatchEmbedOverlapping(patch_size=7, stride=4, padding=2, in_chans=3, embed_dim=embed_dims[0])
network = [] for i in range(len(layers)):
stage = basic_blocks(embed_dims[i], i, layers, mlp_ratio=mlp_ratios[i], qkv_bias=qkv_bias,
qk_scale=qk_scale, attn_drop=attn_drop_rate, drop_path_rate=drop_path_rate,
norm_layer=norm_layer, skip_lam=skip_lam, mlp_fn=mlp_fn)
network.append(stage) if i >= len(layers) - 1: break
if transitions[i] or embed_dims[i] != embed_dims[i+1]:
patch_size = 2 if transitions[i] else 1
network.append(Downsample(embed_dims[i], embed_dims[i+1], patch_size))
self.network = nn.LayerList(network) if self.fork_feat: # add a norm layer for each output
self.out_indices = [0, 2, 4, 6] for i_emb, i_layer in enumerate(self.out_indices): if i_emb == 0 and os.environ.get('FORK_LAST3', None): # TODO: more elegant way
"""For RetinaNet, `start_level=1`. The first norm layer will not used.
cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
"""
layer = Identity() else:
layer = norm_layer(embed_dims[i_emb])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer) else: # Classifier head
self.norm = norm_layer(embed_dims[-1])
self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else Identity()
self.apply(self.cls_init_weights) def cls_init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None:
zeros_(m.bias) elif isinstance(m, nn.LayerNorm):
zeros_(m.bias)
ones_(m.weight) elif isinstance(m, CycleFC):
trunc_normal_(m.weight)
zeros_(m.bias) def forward_embeddings(self, x):
x = self.patch_embed(x) # B,C,H,W-> B,H,W,C
x = x.transpose((0, 2, 3, 1)) return x def forward_tokens(self, x):
outs = [] for idx, block in enumerate(self.network):
x = block(x) if self.fork_feat and idx in self.out_indices:
norm_layer = getattr(self, f'norm{idx}')
x_out = norm_layer(x)
outs.append(x_out.transpose((0, 3, 1, 2))) if self.fork_feat: return outs
B, H, W, C = x.shape
x = x.reshape((B, -1, C)) return x def forward(self, x):
x = self.forward_embeddings(x) # B, H, W, C -> B, N, C
x = self.forward_tokens(x) if self.fork_feat: return x
x = self.norm(x)
cls_out = self.head(x.mean(1)) return cls_outdef CycleMLP_B1(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [2, 2, 4, 2]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs) if pretrained:
params = paddle.load('data/data101687/CycleMLP_B1.pdparams')
model.set_dict(params) return modeldef CycleMLP_B2(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [2, 3, 10, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs) if pretrained:
params = paddle.load('data/data101687/CycleMLP_B2.pdparams')
model.set_dict(params) return modeldef CycleMLP_B3(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 18, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs) if pretrained:
params = paddle.load('data/data101687/CycleMLP_B3.pdparams')
model.set_dict(params) return modeldef CycleMLP_B4(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 8, 27, 3]
mlp_ratios = [8, 8, 4, 4]
embed_dims = [64, 128, 320, 512]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs) if pretrained:
params = paddle.load('data/data101687/CycleMLP_B4.pdparams')
model.set_dict(params) return modeldef CycleMLP_B5(pretrained=False, **kwargs):
transitions = [True, True, True, True]
layers = [3, 4, 24, 3]
mlp_ratios = [4, 4, 4, 4]
embed_dims = [96, 192, 384, 768]
model = CycleNet(layers, embed_dims=embed_dims, patch_size=7, transitions=transitions,
mlp_ratios=mlp_ratios, mlp_fn=CycleMLP, **kwargs) if pretrained:
params = paddle.load('data/data101687/CycleMLP_B5.pdparams')
model.set_dict(params) return modelmodel = CycleMLP_B1(pretrained=True) x = paddle.randn((1, 3, 224, 224)) out = model(x)print(out.shape) model.eval() out = model(x)print(out.shape)
[1, 1000] [1, 1000]
| Model | Parameters | FLOPs | Top 1 Acc. |
|---|---|---|---|
| CycleMLP-B1 | 15M | 2.1G | 78.9% |
| CycleMLP-B2 | 27M | 3.9G | 81.6% |
| CycleMLP-B3 | 38M | 6.9G | 82.4% |
| CycleMLP-B4 | 52M | 10.1G | 83.0% |
| CycleMLP-B5 | 76M | 12.3G | 83.2% |
!mkdir ~/data/ILSVRC2012 !tar -xf ~/data/data68594/ILSVRC2012_img_val.tar -C ~/data/ILSVRC2012
import osimport cv2import numpy as npimport paddleimport paddle.vision.transforms as Tfrom PIL import Image# 构建数据集class ILSVRC2012(paddle.io.Dataset):
def __init__(self, root, label_list, transform, backend='pil'):
self.transform = transform
self.root = root
self.label_list = label_list
self.backend = backend
self.load_datas() def load_datas(self):
self.imgs = []
self.labels = [] with open(self.label_list, 'r') as f: for line in f:
img, label = line[:-1].split(' ')
self.imgs.append(os.path.join(self.root, img))
self.labels.append(int(label)) def __getitem__(self, idx):
label = self.labels[idx]
image = self.imgs[idx] if self.backend=='cv2':
image = cv2.imread(image) else:
image = Image.open(image).convert('RGB')
image = self.transform(image) return image.astype('float32'), np.array(label).astype('int64') def __len__(self):
return len(self.imgs)
val_transforms = T.Compose([
T.Resize(248, interpolation='bicubic'),
T.CenterCrop(224),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 配置模型model = CycleMLP_B1(pretrained=True)
model = paddle.Model(model)
model.prepare(metrics=paddle.metric.Accuracy(topk=(1, 5)))# 配置数据集val_dataset = ILSVRC2012('data/ILSVRC2012', transform=val_transforms, label_list='data/data68594/val_list.txt', backend='pil')# 模型验证acc = model.evaluate(val_dataset, batch_size=8, num_workers=0, verbose=1)print(acc){'acc_top1': 0.78848, 'acc_top5': 0.94604}以上就是浅析并实现 CycleMLP,一种用于密集预测的类 MLP 模型的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号