本文介绍如何通过Paddle.Hub在GitHub分享模型。先搭建MLP-Mixer模型,含MlpBlock、MixerBlock等组件及mixer_b、mixer_l预置模型。接着构建项目,含模型代码文件和hubconf.py配置文件。经本地测试后,上传至GitHub,他人可方便加载使用,接入过程简单。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

# 导入必要的包import paddleimport paddle.nn as nn# MLP Blockclass MlpBlock(nn.Layer):
def __init__(self, features_dim, mlp_dim):
super().__init__()
self.fc_0 = nn.Linear(features_dim, mlp_dim)
self.fc_1 = nn.Linear(mlp_dim, features_dim) def forward(self, x):
y = self.fc_0(x)
y = nn.functional.gelu(y)
y = self.fc_1(y) return y# Mixer Blockclass MixerBlock(nn.Layer):
def __init__(self, token_dim, channels_dim,
tokens_mlp_dim, channels_mlp_dim,
norm_layer=nn.LayerNorm, epsilon=1e-6):
super().__init__()
self.norm_0 = norm_layer(channels_dim, epsilon=epsilon)
self.token_mixing = MlpBlock(token_dim, tokens_mlp_dim)
self.norm_1 = norm_layer(channels_dim, epsilon=epsilon)
self.channel_mixing = MlpBlock(channels_dim, channels_mlp_dim) def forward(self, x):
y = self.norm_0(x)
y = y.transpose((0, 2, 1))
y = self.token_mixing(y)
y = y.transpose((0, 2, 1))
x = x + y
y = self.norm_1(x)
y = self.channel_mixing(y)
x = x + y return x# MLP-Mixerclass MlpMixer(nn.Layer):
def __init__(self, img_size=(224, 224), patch_size=(16, 16),
num_blocks=12, hidden_dim=768,
tokens_mlp_dim=384, channels_mlp_dim=3072,
norm_layer=nn.LayerNorm, epsilon=1e-6,
class_dim=1000):
super().__init__()
self.class_dim = class_dim
self.stem = nn.Conv2D( 3, hidden_dim, kernel_size=patch_size, stride=patch_size)
blocks = [
MixerBlock(
(img_size[0] // patch_size[0]) ** 2,
hidden_dim,
tokens_mlp_dim,
channels_mlp_dim,
norm_layer,
epsilon
) for _ in range(num_blocks)
]
self.blocks = nn.Sequential(*blocks)
self.pre_head_layer_norm = norm_layer(hidden_dim, epsilon=epsilon) if class_dim > 0:
self.head = nn.Linear(hidden_dim, class_dim) def forward(self, inputs):
x = self.stem(inputs)
x = x.transpose((0, 2, 3, 1))
x = x.flatten(1, 2)
x = self.blocks(x)
x = self.pre_head_layer_norm(x) if self.class_dim > 0:
x = x.mean(axis=1)
x = self.head(x) return x# 预置模型 mixer_b# 如果需要给出帮助信息# 需要在下方添加类似的注释def mixer_b(pretrained=False, **kwargs):
'''
Model: MLP-mixer-base
Params:
pretrained: load the pretrained model
img_size: input image size
patch_size: patch size
num_classes: number of classes
num_blocks: number of MixerBlock
hidden_dim: dim of hidden
tokens_mlp_dim: dim of tokens_mlp
channels_mlp_dim: dim of channels_mlp
'''
model = MlpMixer(
hidden_dim=768,
num_blocks=12,
tokens_mlp_dim=384,
channels_mlp_dim=3072,
**kwargs
) # 一般分享模型都是包含预训练模型的
# 可通过网络加载
# 或者通过存放于项目目录中直接加载(GitHub 托管时不推荐,会极大的增加项目大小,拉取时间会非常漫长)
if pretrained:
path = paddle.utils.download.get_weights_path_from_url('https://bj.bcebos.com/v1/ai-studio-online/8fcd0b6ba98042d68763bbcbfe96375cbfd97ffed8334ac09787ef73ecf9989f?responseContentDisposition=attachment%3B%20filename%3Dimagenet1k_Mixer-B_16.pdparams')
model.set_dict(paddle.load(path)) return model# 预置模型 mixer_l# 如果需要给出帮助信息# 需要在下方添加类似的注释def mixer_l(pretrained=False, **kwargs):
'''
Model: MLP-mixer-large
Params:
pretrained: load the pretrained model
img_size: input image size
patch_size: patch size
num_classes: number of classes
num_blocks: number of MixerBlock
hidden_dim: dim of hidden
tokens_mlp_dim: dim of tokens_mlp
channels_mlp_dim: dim of channels_mlp
'''
model = MlpMixer(
hidden_dim=1024,
num_blocks=24,
tokens_mlp_dim=512,
channels_mlp_dim=4096,
**kwargs
) # 一般分享模型都是包含预训练模型的
# 可通过网络加载
# 或者通过存放于项目目录中直接加载(GitHub 托管时不推荐,会极大的增加项目大小,拉取时间会非常漫长)
if pretrained:
path = paddle.utils.download.get_weights_path_from_url('https://bj.bcebos.com/v1/ai-studio-online/ca74ababd4834e34b089c1485989738de4fdf6a97be645ed81b6e39449c5815c?responseContentDisposition=attachment%3B%20filename%3Dimagenet1k_Mixer-L_16.pdparams')
model.set_dict(paddle.load(path)) return modelmodel = mixer_b(pretrained=True) out = model(paddle.randn((1, 3, 224, 224)))print(out.shape)
[1, 1000]
# hubconf.py# 依赖包dependencies = ['paddle', 'numpy']# 导入要分享的模型from model import mixer_b, mixer_l
import paddle# 获取模型列表model_list = paddle.hub.list('MLP-Mixer-Paddle', source='local', force_reload=False)print("模型列表如下:\n", model_list)# 获取 mixer_b 的帮助文档model_help = paddle.hub.help('MLP-Mixer-Paddle', 'mixer_b', source='local', force_reload=False)print("mixer_b 的帮助文档如下:\n", model_help)# 加载 mixer_b 模型并测试model = paddle.hub.load('MLP-Mixer-Paddle', 'mixer_b', source='local', force_reload=False, pretrained=True)
out = model(paddle.randn((1, 3, 224, 224)))print("输出的形状为:", out.shape)模型列表如下:
['mixer_b', 'mixer_l']
mixer_b 的帮助文档如下:
Model: MLP-mixer-base
Params:
pretrained: load the pretrained model
img_size: input image size
patch_size: patch size
num_classes: number of classes
num_blocks: number of MixerBlock
hidden_dim: dim of hidden
tokens_mlp_dim: dim of tokens_mlp
channels_mlp_dim: dim of channels_mlp
输出的形状为: [1, 1000]import paddle# 获取模型列表model_list = paddle.hub.list('jm12138/MLP-Mixer-Paddle:main', source='github', force_reload=False)print("模型列表如下:\n", model_list)# 获取 mixer_b 的帮助文档model_help = paddle.hub.help('jm12138/MLP-Mixer-Paddle:main', 'mixer_b', source='github', force_reload=False)print("mixer_b 的帮助文档如下:\n", model_help)# 加载 mixer_b 模型并测试model = paddle.hub.load('jm12138/MLP-Mixer-Paddle:main', 'mixer_b', source='github', force_reload=False, pretrained=True)
out = model(paddle.randn((1, 3, 224, 224)))print("输出的形状为:", out.shape)模型列表如下:
['mixer_b', 'mixer_l']
mixer_b 的帮助文档如下:
Model: MLP-mixer-base
Params:
pretrained: load the pretrained model
img_size: input image size
patch_size: patch size
num_classes: number of classes
num_blocks: number of MixerBlock
hidden_dim: dim of hidden
tokens_mlp_dim: dim of tokens_mlp
channels_mlp_dim: dim of channels_mlpUsing cache found in /home/aistudio/.cache/paddle/hub/jm12138_MLP-Mixer-Paddle_main Using cache found in /home/aistudio/.cache/paddle/hub/jm12138_MLP-Mixer-Paddle_main
输出的形状为: [1, 1000]
以上就是Paddle.Hub 详解:通过 Paddle.Hub API 分享自己的项目的详细内容,更多请关注php中文网其它相关文章!
每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号