PPOCRLabel半自动工具标注自制身份证数据集

P粉084495128
发布: 2025-07-22 10:08:23
原创
766人浏览过
该项目基于PPOCRLabel半自动化标注工具,使用Python和PyQt5编写,支持多种语言模型,可实现OCR数据高效标注。项目通过代码生成身份证数据集,利用PPOCRLabel标注后用于OCR模型训练,还提供了配置好的环境及相关资料,鼓励用户加入SIG小组共同开发。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

ppocrlabel半自动工具标注自制身份证数据集 - php中文网

项目简介

    本项目基于PPOCRLabel标注工具,PPOCRLabel是一款适用于OCR领域的半自动化图形标注工具,内置PPOCR模型对数据自动标注和重新识别,使用python3和pyqt5编写,支持矩形框标注和四点标注模式(多点标注我已经提交了PR,等待那边审核),导出格式可直接用于PPOCR检测和识别模型的训练。通过内置高质量的PPOCR中,英,法,日文等超轻量预训练模型,可以实现OCR数据的高效标注。CPU机器运行也是完全没问题的。

******** 标注环境 ********

  系统 : Windows + Anaconda
  解释器环境 : 安装Anaconda,(Python 3+)
登录后复制

       

按官方文档执行完以下命令

  • conda install pyqt=5

  • cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下

  • pyrcc5 -o libs/resources.py resources.qrc

  • python PPOCRLabel.py

SIG兴趣小组

SIG队伍:如果您对以上内容感兴趣或对完善工具有不一样的想法,欢迎加入我们的SIG队伍与我们共同开发。可以在此处完成问卷和前置任务,经过我们确认相关内容后即可正式加入,享受SIG福利,共同为OCR开源事业贡献(特别说明:针对PPOCRLabel的改进也属于PaddleOCR前置任务) 还会有各种精美百度定制小礼品,期待你的加入!

关于本项目

本项目基于自己生成身份证数据集代码及其使用PPOCRLabel标注工具来自制数据集,完成全流OCR光学字符识别的从零开始到模型使用。对项目还存在的改进空间,希望大家多交流观点、介绍经验,共同学习进步,可以互相关注♥。个人主页

相关资料

已标注完毕身份证数据集链接

数据增广工具Style Text 这里就不多叙述了,在你的数据集不够的情况下可以使用数据增广工具Style Text. 可以参考这个项目 StyleText数据合成工具 

基于OCR身份证号码识别全流程 已经训练完,正在完善MD笔记

PPOCRLabel半自动标注工具的环境配置比较麻烦,所以这里作者把已经配置好的环境放在百度云盘里面,直接免费提供。点我直接下载

1、代码制作身份证数据集

In [1]
#导入所需要的包from PIL import Image, ImageDraw, ImageFontimport numpy as npimport cv2import random
登录后复制
   

1.1 存放所需属性Person抽象类

In [2]
class Person(object):
    def __init__(self, name, sex, national,
                years, month, day, address,
                id_card):
        self.name=str(name), 
        self.sex=str(sex), 
        self.national=str(national),
        self.years=str(years), 
        self.month=str(month), 
        self.day=str(day), 
        self.address=str(address),
        self.id_card=str(id_card)
登录后复制
   

1.2 定义生成姓名, 性别, 民族, 出生年月, 户籍地址, 身份证ID的函数

In [3]
def GBK2312():
    """
    功能 : 随机生成一个汉字
    """
    head = random.randint(0xb0, 0xf7)
    body = random.randint(0xa1, 0xf9)  # 在head区号为55的那一块最后5个汉字是乱码,为了方便缩减下范围
    val = f'{head:x}{body:x}'
    st = bytes.fromhex(val).decode('gb2312')    return stdef first_name():    
    """
    功能 : 随机取姓氏字典
    """
    first_name_list = [        '赵', '钱', '孙', '李', '周', '吴', '郑', '王', '冯', '陈', '褚', '卫', '蒋', '沈', '韩', '杨', '朱', '秦', '尤', '许',        '何', '吕', '施', '张', '孔', '曹', '严', '华', '金', '魏', '陶', '姜', '戚', '谢', '邹', '喻', '柏', '水', '窦', '章',        '云', '苏', '潘', '葛', '奚', '范', '彭', '郎', '鲁', '韦', '昌', '马', '苗', '凤', '花', '方', '俞', '任', '袁', '柳',        '酆', '鲍', '史', '唐', '费', '廉', '岑', '薛', '雷', '贺', '倪', '汤', '滕', '殷', '罗', '毕', '郝', '邬', '安', '常',        '乐', '于', '时', '傅', '皮', '卞', '齐', '康', '伍', '余', '元', '卜', '顾', '孟', '平', '黄', '和', '穆', '萧', '尹',        '姚', '邵', '堪', '汪', '祁', '毛', '禹', '狄', '米', '贝', '明', '臧', '计', '伏', '成', '戴', '谈', '宋', '茅', '庞',        '熊', '纪', '舒', '屈', '项', '祝', '董', '梁', '魏']
    n = random.randint(0, len(first_name_list) - 1)
    f_name = first_name_list[n]    return f_namedef second_name():
    """
    功能 : 随机取数组中字符,取到空字符则没有second_name
    """
    second_name_list = [GBK2312(), '']
    n = random.randint(0, 1)
    s_name = second_name_list[n]    return s_namedef last_name():
    """
    功能 : 随机生成名字最后一位字
    """
    return GBK2312()def create_name():
    """
    功能 : 随机生成名字
    """
    name = first_name() + second_name() + last_name()    return namedef sex_word():
    """
    功能 : 随机生成性别
    """
    nums = random.randint(0,3)
    sex_list = [        '男', '女', '机器人', '未知']    
    return sex_list[nums]def address_name():  
    """
    功能 : 随机生成省份
    """
    first_name_list = [        '黑龙江省哈尔滨', '吉林省长春', '辽宁省沈阳', '河北省石家庄', '山西省太原', '青海省西宁', '山东省济南', '河南省郑州', '江苏省南京', '安徽省合肥',        '浙江省杭州', '福建省福州', '江西省南昌', '湖南省长沙', '湖北省武汉', '广东省广州', '台湾省台北', '海南省海口', '甘肃省兰州']
    n = random.randint(0, len(first_name_list) - 1)
    address_name = first_name_list[n]    return address_namedef random_id_card():
    """
    功能 : 随机生成18位身份证ID
    """
    num_str = ''
    _rand = random.randint(0, 100)    for i in range(17): #  
        # num_str=str(random.randint(0, 9)).zfill(17)
        num_str = num_str + str(random.randint(0, 9))    if _rand >= 92:
        num_str = num_str + 'X'
    else:
        num_str = num_str + str(random.randint(0, 9))    
    return num_strdef to_str(per):
    """
    功能 : 将元祖转为str
    """
    _str =''.join(per)    
    return _str
登录后复制
   

两种起名方式

import random

def Unicode():    name = ""
    nums = random.randint(2,4)    for n in range(nums):
        val = random.randint(0x4e00, 0x9fbf)        name = name + chr(val)    return namename = Unicode()name
登录后复制
   

1.3 定义画板, 黑体等函数

In [4]
# 定义写字函数def add_txt(image, size, draw_x, draw_y, txt):
    # 字体字号
    setFont = ImageFont.truetype('IDTemplate/simhei.ttf', size)    # 定义画板
    draw = ImageDraw.Draw(image)    # 绘制
    draw.text((draw_x, draw_y), txt, font=setFont, fill=(0, 0, 0))    return image 
 
def make_fake_id_card(person):
    
    
    ori_image = cv2.imread('./IDTemplate/IDCard{}.png'.format(random.randint(0,8))) 
    print('==ori_image.shape:', ori_image.shape)
    ori_image = cv2.resize(ori_image, (0, 0), fx=0.4, fy=0.4)    print('==resize ori_image.shape:', ori_image.shape)    
    
    # 向图片上写字
    img = Image.fromarray(cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB))
    img = add_txt(img, 19, 97, 58, to_str(person.name)) #字体 x坐标 y坐标
    img = add_txt(img, 16, 97, 90, to_str(person.sex))
    img = add_txt(img, 16, 190, 90, to_str(person.national))
    img = add_txt(img, 16, 92, 118, to_str(person.years))
    img = add_txt(img, 16, 162, 118, to_str(person.month))
    img = add_txt(img, 16, 201, 118, to_str(person.day))
    img = add_txt(img, 16, 94, 155, to_str(person.address))
    img = add_txt(img, 16, 94, 176, '某某 666号')
    img = add_txt(img, 18, 147, 239, to_str(person.id_card))
 
    cv2.imwrite('./train_data/middleIMG/word.jpg', np.array(img)[..., ::-1]) 
def make_white_mask(person, nums):
    # 生成一个空白的模板mask
    ori_image = cv2.imread('./IDTemplate/IDCard{}.png'.format(random.randint(0,8)))
    ori_image = cv2.resize(ori_image, (0, 0), fx=0.4, fy=0.4)
    mask_image = np.ones_like(ori_image)
    mask_image *= 255
    print(mask_image.shape,' {}.jpg'.format(nums))
    cv2.imwrite('./train_data/middleIMG/mask.jpg', mask_image) 
    # 往空白模板上写字(这里只能用PIL写,因为OpenCV写中文会乱码)
    img = Image.fromarray(cv2.cvtColor(ori_image, cv2.COLOR_BGR2RGB))
    img = add_txt(img, 19, 97, 58, to_str(person.name)) #字体 x坐标 y坐标
    img = add_txt(img, 16, 97, 90, to_str(person.sex))
    img = add_txt(img, 16, 190, 90, to_str(person.national))
    img = add_txt(img, 16, 92, 118, to_str(person.years))
    img = add_txt(img, 16, 162, 118, to_str(person.month))
    img = add_txt(img, 16, 201, 118, to_str(person.day))
    img = add_txt(img, 16, 94, 155, to_str(person.address))
    img = add_txt(img, 16, 94, 176, '某某 666号--自制数据集')
    img = add_txt(img, 18, 147, 239, to_str(person.id_card))
 
    mask_image_txt = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
    cv2.imwrite('./train_data/middleIMG/mask_image_txt.jpg', mask_image_txt)
    gray = cv2.cvtColor(mask_image_txt, cv2.COLOR_BGR2GRAY)    # 高斯模糊,制造边缘模糊效果哦
    gray_Gaussianblur = cv2.GaussianBlur(gray, (3, 3), 0) 
    # 使用阈值对图片进行二值化
    th, res = cv2.threshold(gray_Gaussianblur, 200, 255, cv2.THRESH_BINARY)
    res_inv = cv2.bitwise_not(res)
    cv2.imwrite('./train_data/middleIMG/res_inv.jpg', res_inv) 
    # 写字的模板保留文字部分
    img_bg = cv2.bitwise_and(mask_image_txt, mask_image_txt, mask=res_inv)
    cv2.imwrite('./train_data/middleIMG/img_bg.jpg', img_bg)    # 原图保留除文字的其他部分
    img_fg = cv2.bitwise_and(ori_image, ori_image, mask=res)
    cv2.imwrite('./train_data/middleIMG/img_fg.jpg', img_fg)    # 将两张图直接进行相加,即可
    final = cv2.add(img_bg, img_fg)
    cv2.imwrite('./train_data/{}.jpg'.format(nums), final)
登录后复制
   
In [5]
!mkdir -p train_data/middleIMG
登录后复制
   
In [6]
if __name__ == '__main__':    # make_fake_id_card()
    for i in range(3200):
        person = Person(name=create_name(), sex=sex_word(), national='汉',
                    years=str(random.randint(1970, 2020)), month=str(random.randint(1, 12)), 
                    day=str(random.randint(1, 28)), address=address_name(), id_card=random_id_card())
        make_white_mask(person, str(i).zfill(4))
登录后复制
   

1.4 自制数据集各个文件展示

二值化:train_data/middleIMG/res_inv.jpg PPOCRLabel半自动工具标注自制身份证数据集 - php中文网            

写字的模板保留文字部分:train_data/middleIMG/img_bg.jpg PPOCRLabel半自动工具标注自制身份证数据集 - php中文网            

原图保留除文字的其他部分:train_data/middleIMG/img_fg.jpg PPOCRLabel半自动工具标注自制身份证数据集 - php中文网            

最终效果 :

原图和写字的两张图直接进行相加:train_data/0000.jpg PPOCRLabel半自动工具标注自制身份证数据集 - php中文网            

1.5 存储自制数据集,准备放入PPOCRLabel自行标注

In [7]
#解压zip !zip -q -r train_data.zip train_data/
登录后复制
   

2、PPOCRLabel半自动标注工具

2.1 解压标注工具在本地

git clone https://github.com.cnpmjs.org/paddlepaddle/PaddleOCR.git

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

2.2 PyCharm 打开项目 (用别的工具也可以)

PPOCRLabel半自动标注工具的环境配置比较麻烦,所以这里作者把已经配置好的环境放在百度云盘里面,直接免费提供。点我直接下载

2.3 环境配置

    第一步 : 要有Anaconda Navigator (Anaconda3) ,推荐去官网下载,下载完! 打开文件夹环境所在位置,例如我的环境是(D:\Anaconda3\envs)

集简云
集简云

软件集成平台,快速建立企业自动化与智能化

集简云 22
查看详情 集简云

   下载完百度云盘的LabelImg.zip文件之后,解压到自己的 Anaconda3\envs 文件夹下。完整目录就是 D:\Anaconda3\envs\LabelImg 。

运行环境百度云链接与提取码---->链接:https://pan.baidu.com/s/1zYrmVkwkL69mziO_wnUNDg 提取码:6666

示例如下图所示:

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

   第二步 : 接下来图文操作, Ctrl + Alt + S 打开设置

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

   第三步 : 在pycharm终端运行更新资源指令: pyrcc5 -o libs/resources.py resources.qrc

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

    最后一步 : 运行即可 PaddleOCR\PPOCRLabel\PPOCRLabel.py  运行PPOCRLabel.py

开始会下载已经训练好的模型权重,如下图 :

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

运行成功截图 :

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

3、使用PPOCRLabel标注工具标注

3.1 选择好我们生成的train_data数据集文件

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

3.2 点标注或者四点矩形框标注

    用过标注工具的同学,应该都知道怎么标注了。 按 W 是四点矩形框标注 ,按 Q 是点标注,我已经在SIG小组实现四点及其以上的标注框,欢迎大家参加SIG小组,为开源做贡献

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

3.3 切换对应模型重识别,更高效的自动标注

    PPOCRLabel人性化的推出了各个常见语言的训练模型,

    如下图 :

   1.中文与英文模型权重 
    
   2.英文模型权重 
   
   3.法语模型权重 
   
   4.德语模型权重 
   
   5.韩文模型权重 
   
   6.日文模型权重
登录后复制
       

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

3.4 生成给Det的标注文件分别为如下三个

Cache.cach : 标注的缓存文件

fileState.txt : 标注的每个图片的状态文件 1 则是确认标注 0 则是未确认

Label.txt : 训练Det所需要的训练文件,数据集格式属于:SimpleDataSet

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

3.5 如何生成给Rec的标注文件

    打开菜单点击导出rec识别的label即可,如右图文所示 : PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

    导出结果会生成一个截出框的图片文件夹,以及对应的rec标签

PPOCRLabel半自动工具标注自制身份证数据集 - php中文网PPOCRLabel半自动工具标注自制身份证数据集 - php中文网        

以上就是PPOCRLabel半自动工具标注自制身份证数据集的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号