0

0

保险文本视觉认知问答竞赛(Baseline)

P粉084495128

P粉084495128

发布时间:2025-07-22 10:33:48

|

462人浏览过

|

来源于php中文网

原创

本次赛题围绕保险扫描文档的OCR识别与智能问答展开,提供含票据等20多种类型的扫描文件数据集,含训练集5000余张图片及4万余个问答标注,测试集1000张左右图片及7000个问题。基线采用两阶段处理,先用PaddleOCR识别文本,再用PaddleNLP通过抽取式阅读理解得出答案,还给出了模型训练等相关内容及示例问答。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

保险文本视觉认知问答竞赛(baseline) - php中文网

赛题简介

  • 在寿险、产险、健康险等保险的理赔流程和客户服务环节中,存在大量扫描文档,例如医疗票据、费用清单、病例等。
  • 对这些扫描文档进行文字检测与识别,并且提取出结构化信息,可以用于极速理赔、个人健康管理等业务场景。
  • 本次赛题将提供扫描文件数据集,参赛队利用OCR技术自动识别影像资料后,再通过AI智能判断所识别文字的内在逻辑,回答关于图片的自然语言问题。
  • 问题的答案是可以从图片中提取的任何文本/标记。

数据简介

  • 本次大赛提供的数据集使用的扫描文件类型包括票据、说明、报告等20 多种。混合了印刷、打字和手写的内容。
  • 训练集有5000余张左右原始扫描文件及对应的 4万余个自然语言问答标注。提供的数据均已做了标注及脱敏。
  • 训练集数据包括:
    • image:包含所有原始扫描文件图像
    • train.csv:问答训练库,包含序号(index)、问题 ID(quesiton_id)、图片名称(filename)、问题(question_text)、答案(answer_text),共 5 列
    • readme:数据说明文档
  • 测试集数据规模为1000张左右原始扫描文件及对应的7000个自然语言问题,数据内容样例同训练集。
  • 测试集包含以下3个文件:
    • image:包含所有原始扫描文件图像
    • test1.csv:问答测试库,包含序号(index)、问题 ID(quesiton_id)、图片路径(filename)、问题(question_text),共 4 列
    • readme:数据说明文档

数据样例

  • 样例一:

    保险文本视觉认知问答竞赛(Baseline) - php中文网                

    • 提问:西药费的金额是多少? 回答:140.16 提问:140.16元购买了什么药品? 回答:{甲}缘沙坦胶囊{基}
  • 样例二:

    魔珐星云
    魔珐星云

    无需昂贵GPU,一键解锁超写实/二次元等多风格3D数字人,跨端适配千万级并发的具身智能平台。

    下载

    保险文本视觉认知问答竞赛(Baseline) - php中文网                

    • 提问:这是一份关于什么药品的说明? 回答:十三味疏肝胶囊 提问:药品的有效期是多久? 回答:1.5年

基线总体架构

  • 基线项目使用的是两阶段的处理方式:
    • PaddleOCR:图像 ==OCR==> 文本信息
    • PaddleNLP:文本信息 + 问题 ==抽取式阅读理解==> 答案

安装依赖包

  • PaddleOCR:GitHub、Gitee
  • PaddleNLP:GitHub、Gitee
In [ ]
!pip install paddleocr==2.0.4 paddlenlp==2.0.0rc18
   

解压官方数据集

  • 如果需要自行处理数据,可以使用下方的命令进行解压
In [ ]
# !tar -xf data/data83016/dataset.tar -C data
   

数据集预处理

  • 使用 PaddleOCR 识别图片中的文本信息,将其作为抽取式阅读理解的文章
  • 并将数据格式转换为 SQuAD 格式,方便后续 PaddleNLP 读取使用
  • 处理完成的数据集以存放于 AIStudio 数据集中,可以直接挂载使用
  • 如果需要重新生成数据集的话,可以运行下面的命令,处理需耗时一个半小时左右,请耐心等待
In [ ]
# !python gen_dataset.py
   

模型训练

  • 基于 PaddleNLP 开发的抽取式阅读理解
  • 更多详细介绍请参考:『NLP经典项目集』08: 使用预训练模型完成阅读理解
In [1]
!mkdir /home/aistudio/checkpointimport paddleimport paddlenlp as ppnlpfrom functools import partialfrom paddlenlp.data import Stack, Dict, Padfrom utils import prepare_train_features, prepare_validation_features, evaluate############参数配置################ 模型名称MODEL_NAME = "ernie-1.0"# 最大文本长度max_seq_length = 512# 文本滑动窗口步幅doc_stride = 128# 训练过程中的最大学习率learning_rate = 3e-5 # 训练轮次epochs = 1# 数据批次大小batch_size = 8# 学习率预热比例warmup_proportion = 0.1# 权重衰减系数,类似模型正则项策略,避免模型过拟合weight_decay = 0.01#############模型################# 加载模型model = ppnlp.transformers.ErnieForQuestionAnswering.from_pretrained(MODEL_NAME)# 加载 tokenizertokenizer = ppnlp.transformers.ErnieTokenizer.from_pretrained(MODEL_NAME)#############数据################ 加载数据集train_ds = ppnlp.datasets.load_dataset('dureader_robust', data_files='data/data83268/train.json')
dev_ds = ppnlp.datasets.load_dataset('dureader_robust', data_files='data/data83268/dev.json')# 数据滑窗处理train_trans_func = partial(prepare_train_features, 
                           max_seq_length=max_seq_length, 
                           doc_stride=doc_stride,
                           tokenizer=tokenizer)

train_ds.map(train_trans_func, batched=True)

dev_trans_func = partial(prepare_validation_features, 
                           max_seq_length=max_seq_length, 
                           doc_stride=doc_stride,
                           tokenizer=tokenizer)
                           
dev_ds.map(dev_trans_func, batched=True)# 数据读取器配置train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_ds, batch_size=batch_size, shuffle=True)

train_batchify_fn = lambda samples, fn=Dict({    "input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id),    "token_type_ids": Pad(axis=0, pad_val=tokenizer.pad_token_type_id),    "start_positions": Stack(dtype="int64"),    "end_positions": Stack(dtype="int64")
}): fn(samples)

train_data_loader = paddle.io.DataLoader(
    dataset=train_ds,
    batch_sampler=train_batch_sampler,
    collate_fn=train_batchify_fn,
    return_list=True)

dev_batch_sampler = paddle.io.BatchSampler(
    dev_ds, batch_size=batch_size, shuffle=False)

dev_batchify_fn = lambda samples, fn=Dict({    "input_ids": Pad(axis=0, pad_val=tokenizer.pad_token_id),    "token_type_ids": Pad(axis=0, pad_val=tokenizer.pad_token_type_id)
}): fn(samples)

dev_data_loader = paddle.io.DataLoader(
    dataset=dev_ds,
    batch_sampler=dev_batch_sampler,
    collate_fn=dev_batchify_fn,
    return_list=True)#############优化器配置############## 学习率策略num_training_steps = len(train_data_loader) * epochs
lr_scheduler = ppnlp.transformers.LinearDecayWithWarmup(learning_rate, num_training_steps, warmup_proportion)# Generate parameter names needed to perform weight decay.# All bias and LayerNorm parameters are excluded.decay_params = [
    p.name for n, p in model.named_parameters()    if not any(nd in n for nd in ["bias", "norm"])
]# 设置优化器optimizer = paddle.optimizer.AdamW(
    learning_rate=lr_scheduler,
    parameters=model.parameters(),
    weight_decay=weight_decay,
    apply_decay_param_fun=lambda x: x in decay_params)#############损失函数################class CrossEntropyLossForSQuAD(paddle.nn.Layer):
    def __init__(self):
        super(CrossEntropyLossForSQuAD, self).__init__()    def forward(self, y, label):
        start_logits, end_logits = y   # both shape are [batch_size, seq_len]
        start_position, end_position = label
        start_position = paddle.unsqueeze(start_position, axis=-1)
        end_position = paddle.unsqueeze(end_position, axis=-1)
        start_loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=start_logits, label=start_position, soft_label=False)
        start_loss = paddle.mean(start_loss)
        end_loss = paddle.nn.functional.softmax_with_cross_entropy(
            logits=end_logits, label=end_position, soft_label=False)
        end_loss = paddle.mean(end_loss)

        loss = (start_loss + end_loss) / 2
        return loss#############模型训练################# 实例化 losscriterion = CrossEntropyLossForSQuAD()
global_step = 0# 训练for epoch in range(1, epochs + 1):    for step, batch in enumerate(train_data_loader, start=1):
        global_step += 1
        input_ids, segment_ids, start_positions, end_positions = batch
        logits = model(input_ids=input_ids, token_type_ids=segment_ids)
        loss = criterion(logits, (start_positions, end_positions))        if global_step % 100 == 0 :            print("global step %d, epoch: %d, batch: %d, loss: %.5f" % (global_step, epoch, step, loss))
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.clear_grad()

    evaluate(model=model, data_loader=dev_data_loader) 

# 保存model.save_pretrained('/home/aistudio/checkpoint')
tokenizer.save_pretrained('/home/aistudio/checkpoint')
       
[2021-04-22 20:48:38,873] [    INFO] - Already cached /home/aistudio/.paddlenlp/models/ernie-1.0/ernie_v1_chn_base.pdparams
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1303: UserWarning: Skip loading for classifier.weight. classifier.weight is not found in the provided dict.
  warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/layers.py:1303: UserWarning: Skip loading for classifier.bias. classifier.bias is not found in the provided dict.
  warnings.warn(("Skip loading for {}. ".format(key) + str(err)))
[2021-04-22 20:48:42,972] [    INFO] - Found /home/aistudio/.paddlenlp/models/ernie-1.0/vocab.txt
       
global step 100, epoch: 1, batch: 100, loss: 5.33133
global step 200, epoch: 1, batch: 200, loss: 2.81528
global step 300, epoch: 1, batch: 300, loss: 1.96900
global step 400, epoch: 1, batch: 400, loss: 1.99122
global step 500, epoch: 1, batch: 500, loss: 2.26535
global step 600, epoch: 1, batch: 600, loss: 1.91357
global step 700, epoch: 1, batch: 700, loss: 1.60655
global step 800, epoch: 1, batch: 800, loss: 1.76000
global step 900, epoch: 1, batch: 900, loss: 1.13124124
global step 1000, epoch: 1, batch: 1000, loss: 1.72126
global step 1100, epoch: 1, batch: 1100, loss: 1.89857
global step 1200, epoch: 1, batch: 1200, loss: 1.47760
global step 1300, epoch: 1, batch: 1300, loss: 1.70778
global step 1400, epoch: 1, batch: 1400, loss: 1.30835
global step 1500, epoch: 1, batch: 1500, loss: 2.72890
global step 1600, epoch: 1, batch: 1600, loss: 1.84454
global step 1700, epoch: 1, batch: 1700, loss: 3.09311
global step 1800, epoch: 1, batch: 1800, loss: 1.83173
global step 1900, epoch: 1, batch: 1900, loss: 1.07240
global step 2000, epoch: 1, batch: 2000, loss: 1.33060
global step 2100, epoch: 1, batch: 2100, loss: 1.04376
global step 2200, epoch: 1, batch: 2200, loss: 1.63946
global step 2300, epoch: 1, batch: 2300, loss: 2.03573
global step 2400, epoch: 1, batch: 2400, loss: 1.47289
global step 2500, epoch: 1, batch: 2500, loss: 1.08369
global step 2600, epoch: 1, batch: 2600, loss: 1.38365
global step 2700, epoch: 1, batch: 2700, loss: 1.71040
global step 2800, epoch: 1, batch: 2800, loss: 1.26852
global step 2900, epoch: 1, batch: 2900, loss: 2.52206
global step 3000, epoch: 1, batch: 3000, loss: 1.91332
global step 3100, epoch: 1, batch: 3100, loss: 1.47257
global step 3200, epoch: 1, batch: 3200, loss: 1.06718
global step 3300, epoch: 1, batch: 3300, loss: 1.79864
global step 3400, epoch: 1, batch: 3400, loss: 1.58367
global step 3500, epoch: 1, batch: 3500, loss: 0.83910
global step 3600, epoch: 1, batch: 3600, loss: 1.63214
global step 3700, epoch: 1, batch: 3700, loss: 3.27789
global step 3800, epoch: 1, batch: 3800, loss: 1.13076
global step 3900, epoch: 1, batch: 3900, loss: 1.18562
global step 4000, epoch: 1, batch: 4000, loss: 0.91027
global step 4100, epoch: 1, batch: 4100, loss: 0.81818
global step 4200, epoch: 1, batch: 4200, loss: 1.16851
global step 4300, epoch: 1, batch: 4300, loss: 1.64349
global step 4400, epoch: 1, batch: 4400, loss: 1.51092
global step 4500, epoch: 1, batch: 4500, loss: 2.32444
global step 4600, epoch: 1, batch: 4600, loss: 1.04382
global step 4700, epoch: 1, batch: 4700, loss: 1.18952
global step 4800, epoch: 1, batch: 4800, loss: 1.08606
global step 4900, epoch: 1, batch: 4900, loss: 1.37461
global step 5000, epoch: 1, batch: 5000, loss: 1.14658
global step 5100, epoch: 1, batch: 5100, loss: 1.24930
global step 5200, epoch: 1, batch: 5200, loss: 0.97293
global step 5300, epoch: 1, batch: 5300, loss: 1.39240
global step 5400, epoch: 1, batch: 5400, loss: 1.52307
global step 5500, epoch: 1, batch: 5500, loss: 1.01953
global step 5600, epoch: 1, batch: 5600, loss: 1.54944
global step 5700, epoch: 1, batch: 5700, loss: 1.86738
global step 5800, epoch: 1, batch: 5800, loss: 1.54679
global step 5900, epoch: 1, batch: 5900, loss: 2.57512
global step 6000, epoch: 1, batch: 6000, loss: 1.68195
global step 6100, epoch: 1, batch: 6100, loss: 2.33640
global step 6200, epoch: 1, batch: 6200, loss: 1.33415
global step 6300, epoch: 1, batch: 6300, loss: 1.53034
global step 6400, epoch: 1, batch: 6400, loss: 2.18684
global step 6500, epoch: 1, batch: 6500, loss: 1.03164
global step 6600, epoch: 1, batch: 6600, loss: 1.31069
global step 6700, epoch: 1, batch: 6700, loss: 1.56807
global step 6800, epoch: 1, batch: 6800, loss: 0.98548
global step 6900, epoch: 1, batch: 6900, loss: 0.99514
global step 7000, epoch: 1, batch: 7000, loss: 0.98318
global step 7100, epoch: 1, batch: 7100, loss: 1.00131
global step 7200, epoch: 1, batch: 7200, loss: 0.95227
global step 7300, epoch: 1, batch: 7300, loss: 1.08113
global step 7400, epoch: 1, batch: 7400, loss: 0.82864
global step 7500, epoch: 1, batch: 7500, loss: 2.03780
global step 7600, epoch: 1, batch: 7600, loss: 1.08267
global step 7700, epoch: 1, batch: 7700, loss: 1.19368
global step 7800, epoch: 1, batch: 7800, loss: 1.13193
global step 7900, epoch: 1, batch: 7900, loss: 0.86742
global step 8000, epoch: 1, batch: 8000, loss: 1.33992
global step 8100, epoch: 1, batch: 8100, loss: 2.19699
global step 8200, epoch: 1, batch: 8200, loss: 0.98966
global step 8300, epoch: 1, batch: 8300, loss: 0.91852
global step 8400, epoch: 1, batch: 8400, loss: 0.98416
global step 8500, epoch: 1, batch: 8500, loss: 0.93930
global step 8600, epoch: 1, batch: 8600, loss: 1.14956
global step 8700, epoch: 1, batch: 8700, loss: 0.98243
global step 8800, epoch: 1, batch: 8800, loss: 1.07073
global step 8900, epoch: 1, batch: 8900, loss: 0.87538
global step 9000, epoch: 1, batch: 9000, loss: 1.29235
global step 9100, epoch: 1, batch: 9100, loss: 1.42117
global step 9200, epoch: 1, batch: 9200, loss: 2.06677
global step 9300, epoch: 1, batch: 9300, loss: 1.20705
global step 9400, epoch: 1, batch: 9400, loss: 1.14359
global step 9500, epoch: 1, batch: 9500, loss: 0.92873
global step 9600, epoch: 1, batch: 9600, loss: 1.21142
global step 9700, epoch: 1, batch: 9700, loss: 1.35645
global step 9800, epoch: 1, batch: 9800, loss: 1.16116
global step 9900, epoch: 1, batch: 9900, loss: 1.08292
global step 10000, epoch: 1, batch: 10000, loss: 1.59773
global step 10100, epoch: 1, batch: 10100, loss: 1.01784
global step 10200, epoch: 1, batch: 10200, loss: 0.67115
global step 10300, epoch: 1, batch: 10300, loss: 1.47989
global step 10400, epoch: 1, batch: 10400, loss: 1.01132
global step 10500, epoch: 1, batch: 10500, loss: 0.97569
global step 10600, epoch: 1, batch: 10600, loss: 1.14948
global step 10700, epoch: 1, batch: 10700, loss: 2.03889
global step 10800, epoch: 1, batch: 10800, loss: 1.08176
global step 10900, epoch: 1, batch: 10900, loss: 0.78584
global step 11000, epoch: 1, batch: 11000, loss: 2.09304
global step 11100, epoch: 1, batch: 11100, loss: 2.07693
global step 11200, epoch: 1, batch: 11200, loss: 1.08243
global step 11300, epoch: 1, batch: 11300, loss: 1.74269
global step 11400, epoch: 1, batch: 11400, loss: 2.41344
global step 11500, epoch: 1, batch: 11500, loss: 0.73077
global step 11600, epoch: 1, batch: 11600, loss: 0.81114
global step 11700, epoch: 1, batch: 11700, loss: 1.29751
global step 11800, epoch: 1, batch: 11800, loss: 1.33166
global step 11900, epoch: 1, batch: 11900, loss: 0.89963
global step 12000, epoch: 1, batch: 12000, loss: 0.94474
global step 12100, epoch: 1, batch: 12100, loss: 1.06279
global step 12200, epoch: 1, batch: 12200, loss: 1.91975
global step 12300, epoch: 1, batch: 12300, loss: 1.00609
global step 12412400, epoch: 1, batch: 12412400, loss: 1.47376
global step 12500, epoch: 1, batch: 12500, loss: 1.03436
global step 12600, epoch: 1, batch: 12600, loss: 1.01267
global step 12700, epoch: 1, batch: 12700, loss: 1.22741
global step 12800, epoch: 1, batch: 12800, loss: 1.01167
global step 12900, epoch: 1, batch: 12900, loss: 2.15446
global step 13000, epoch: 1, batch: 13000, loss: 0.77935
global step 13100, epoch: 1, batch: 13100, loss: 1.25362
global step 13200, epoch: 1, batch: 13200, loss: 1.98043
global step 13300, epoch: 1, batch: 13300, loss: 1.87204
global step 13400, epoch: 1, batch: 13400, loss: 1.13598
global step 13500, epoch: 1, batch: 13500, loss: 1.03505
global step 13600, epoch: 1, batch: 13600, loss: 0.94357
global step 13700, epoch: 1, batch: 13700, loss: 0.98602
global step 13800, epoch: 1, batch: 13800, loss: 0.88241
global step 13900, epoch: 1, batch: 13900, loss: 1.53893
global step 14000, epoch: 1, batch: 14000, loss: 1.36677
global step 14100, epoch: 1, batch: 14100, loss: 1.08053
global step 14200, epoch: 1, batch: 14200, loss: 1.37873
global step 14300, epoch: 1, batch: 14300, loss: 0.66778
global step 14400, epoch: 1, batch: 14400, loss: 2.18860
global step 14500, epoch: 1, batch: 14500, loss: 1.57532
global step 14600, epoch: 1, batch: 14600, loss: 0.99812
global step 14700, epoch: 1, batch: 14700, loss: 0.86738
global step 14800, epoch: 1, batch: 14800, loss: 1.23389
global step 14900, epoch: 1, batch: 14900, loss: 1.15881
global step 15000, epoch: 1, batch: 15000, loss: 1.03445
global step 15100, epoch: 1, batch: 15100, loss: 0.88822
global step 15200, epoch: 1, batch: 15200, loss: 1.13733
global step 15300, epoch: 1, batch: 15300, loss: 1.28856
global step 15400, epoch: 1, batch: 15400, loss: 1.17445
global step 15500, epoch: 1, batch: 15500, loss: 1.28670
global step 15600, epoch: 1, batch: 15600, loss: 2.49681
global step 15700, epoch: 1, batch: 15700, loss: 1.19437
global step 15800, epoch: 1, batch: 15800, loss: 1.06376
global step 15900, epoch: 1, batch: 15900, loss: 0.98734
global step 16000, epoch: 1, batch: 16000, loss: 1.17667
global step 16100, epoch: 1, batch: 16100, loss: 1.28779
global step 16200, epoch: 1, batch: 16200, loss: 1.05283
global step 16300, epoch: 1, batch: 16300, loss: 1.62172
global step 16400, epoch: 1, batch: 16400, loss: 0.92708
global step 16500, epoch: 1, batch: 16500, loss: 0.95624
global step 16600, epoch: 1, batch: 16600, loss: 1.29848
global step 16700, epoch: 1, batch: 16700, loss: 1.27211
global step 16800, epoch: 1, batch: 16800, loss: 1.17851
global step 16900, epoch: 1, batch: 16900, loss: 1.28291
global step 17000, epoch: 1, batch: 17000, loss: 1.08720
global step 17100, epoch: 1, batch: 17100, loss: 1.08356
global step 17200, epoch: 1, batch: 17200, loss: 1.00867
Processing example: 1000
time per 1000: 11.201786994934082
Processing example: 2000
time per 1000: 11.235816478729248
Processing example: 3000
time per 1000: 10.834845066070557
Processing example: 4000
time per 1000: 11.04150128364563
Processing example: 5000
time per 1000: 11.004519701004028
Processing example: 6000
time per 1000: 11.003149509429932
Processing example: 7000
time per 1000: 11.149619340896606
{
  "exact": 56.03663613655287,
  "f1": 72.53400335174827,
  "total": 1201,
  "HasAns_exact": 56.03663613655287,
  "HasAns_f1": 72.53400335174827,
  "HasAns_total": 1201
}

问题: 本次医保范围支付多少钱?
原文: 54020292北京市医疗网珍收费票据医保已世结發部监NO财16139-54-02实时结算:★医疗机构类型:交易流水号:2411000107180415993045社会保障卡号40096415918041502915城镇工男医保类型:单价数量单位业务流水号:性别:15380等级项目/规格姓名:金额有自作数量/单位鸡7500单价中成药贸6.2Y项目规格无自付:复方甲氧那明胶/48粒23.75001/瓶12.E200西药费收都联153.8000付jia酸左氧沙星/0.116.2G00无苏黄止咳囊/Q.45g2粒76.90002/津有效遣夫不北京市财政局印制·20172收费专用道172.32自付一17232000172.32起村金额17.750.G0衣饮医保范内金狮1332.51封顶金额0.00门诊大额支付0.0自付二0.累计医供内范金额190.07退体补充支付0.00年门诊大额票计支付0.白费个人支付金额陵军补财支付0.00190.070.09本饮支付后·个人账户余额单位补充险[原公疗]支付个人账户支付0.00基金支情2合计(大写收款人收款单位(章)
答案: 172.32

问题: 9260是什么的编号?
原文: 54020292北京市医疗网珍收费票据医保已世结發部监NO财16139-54-02实时结算:★医疗机构类型:交易流水号:2411000107180415993045社会保障卡号40096415918041502915城镇工男医保类型:单价数量单位业务流水号:性别:15380等级项目/规格姓名:金额有自作数量/单位鸡7500单价中成药贸6.2Y项目规格无自付:复方甲氧那明胶/48粒23.75001/瓶12.E200西药费收都联153.8000付jia酸左氧沙星/0.116.2G00无苏黄止咳囊/Q.45g2粒76.90002/津有效遣夫不北京市财政局印制·20172收费专用道172.32自付一17232000172.32起村金额17.750.G0衣饮医保范内金狮1332.51封顶金额0.00门诊大额支付0.0自付二0.累计医供内范金额190.07退体补充支付0.00年门诊大额票计支付0.白费个人支付金额陵军补财支付0.00190.070.09本饮支付后·个人账户余额单位补充险[原公疗]支付个人账户支付0.00基金支情2合计(大写收款人收款单位(章)
答案: 收款单位

问题: 图7是表达什么的?
原文: 东莞证券DONGGUANSECURITIES盛达资源(000603)深度报告45720062003.5520042002.53200222001.5112000.52002008-01-022013-11-022015-01-022015-08-022016-03-022016-10-022017-05-022017-12-022018-07-022019-02-022008-08-022010-12-022012-02-022012-09-022013-04-022014-06-022019-09-022009-10-022010-05-022011-07-022009-03-022020-04-022222SS30202Q90010S20C20美国:所有联储银行:资产:总资产美国:国债收益率:10年美国:联邦基金利率(日)美国:所有联储银行:资产:持有证券:美国国债资料来源:wind,东莞证券研究所资料来源:wind,东莞证券研究所图7:美国国债总额迅速增加(十亿美元)图8:美元流动性危机解除280005.0025.00260004.50240004.0020.00220003.503.002000015.002.50180002.001600010.00140001.501.00120005.00100000.5080000.002012-02-022013-11-022015-01-022016-03-022011-07-022013-04-022014-06-022015-08-022016-10-022017-05-022017-12-022008-01-022010-12-022012-09-022009-10-022010-05-022018-07-022008-08-022009-03-022019-02-022019-09-022012-09-022018-07-022008-01-022009-03-022009-10-022010-05-022010-12-022011-07-022012-02-022013-04-022013-11-022014-06-022015-08-022016-03-022017-05-022017-12-022019-02-022019-09-022020-04-022015-01-022016-10-022008-08-022020-04-02美国:国债总额-LIBOR:美元:3个月-美国:国债收益率:3个月M2同比增速(季调,右轴资料来源:wind,东莞证券研究所资料来源:wind,东莞证券研究所4.2.2美元处于下行通道,驱动黄金价格上行美国在疫情未受控情况下,强行重启经济,新冠新增感染人数仍在高位,市场对美国经济修复是否通畅存有忧虑。西欧及日本疫情率先于美国得到控制,美元相对欧元、英锈走弱。美国实施规模空前的财政刺激,导致政府负债迅速攀升,美元信用度下降美元指数下行将驱动以美元计价的黄金价格走高。图9:美国新冠新增感染人数仍在高位(人/日)图10:欧、日、美新冠新增感染人数(人/日)17请务必阅读末页声明。
答案: 美国国债总额迅速增加(十亿美元)

问题: 图8是说明什么的?
原文: 东莞证券DONGGUANSECURITIES盛达资源(000603)深度报告45720062003.5520042002.53200222001.5112000.52002008-01-022013-11-022015-01-022015-08-022016-03-022016-10-022017-05-022017-12-022018-07-022019-02-022008-08-022010-12-022012-02-022012-09-022013-04-022014-06-022019-09-022009-10-022010-05-022011-07-022009-03-022020-04-022222SS30202Q90010S20C20美国:所有联储银行:资产:总资产美国:国债收益率:10年美国:联邦基金利率(日)美国:所有联储银行:资产:持有证券:美国国债资料来源:wind,东莞证券研究所资料来源:wind,东莞证券研究所图7:美国国债总额迅速增加(十亿美元)图8:美元流动性危机解除280005.0025.00260004.50240004.0020.00220003.503.002000015.002.50180002.001600010.00140001.501.00120005.00100000.5080000.002012-02-022013-11-022015-01-022016-03-022011-07-022013-04-022014-06-022015-08-022016-10-022017-05-022017-12-022008-01-022010-12-022012-09-022009-10-022010-05-022018-07-022008-08-022009-03-022019-02-022019-09-022012-09-022018-07-022008-01-022009-03-022009-10-022010-05-022010-12-022011-07-022012-02-022013-04-022013-11-022014-06-022015-08-022016-03-022017-05-022017-12-022019-02-022019-09-022020-04-022015-01-022016-10-022008-08-022020-04-02美国:国债总额-LIBOR:美元:3个月-美国:国债收益率:3个月M2同比增速(季调,右轴资料来源:wind,东莞证券研究所资料来源:wind,东莞证券研究所4.2.2美元处于下行通道,驱动黄金价格上行美国在疫情未受控情况下,强行重启经济,新冠新增感染人数仍在高位,市场对美国经济修复是否通畅存有忧虑。西欧及日本疫情率先于美国得到控制,美元相对欧元、英锈走弱。美国实施规模空前的财政刺激,导致政府负债迅速攀升,美元信用度下降美元指数下行将驱动以美元计价的黄金价格走高。图9:美国新冠新增感染人数仍在高位(人/日)图10:欧、日、美新冠新增感染人数(人/日)17请务必阅读末页声明。
答案: 美元流动性危机解除

问题: 文中上面的四张图的资料来源都是哪里?
原文: 东莞证券DONGGUANSECURITIES盛达资源(000603)深度报告45720062003.5520042002.53200222001.5112000.52002008-01-022013-11-022015-01-022015-08-022016-03-022016-10-022017-05-022017-12-022018-07-022019-02-022008-08-022010-12-022012-02-022012-09-022013-04-022014-06-022019-09-022009-10-022010-05-022011-07-022009-03-022020-04-022222SS30202Q90010S20C20美国:所有联储银行:资产:总资产美国:国债收益率:10年美国:联邦基金利率(日)美国:所有联储银行:资产:持有证券:美国国债资料来源:wind,东莞证券研究所资料来源:wind,东莞证券研究所图7:美国国债总额迅速增加(十亿美元)图8:美元流动性危机解除280005.0025.00260004.50240004.0020.00220003.503.002000015.002.50180002.001600010.00140001.501.00120005.00100000.5080000.002012-02-022013-11-022015-01-022016-03-022011-07-022013-04-022014-06-022015-08-022016-10-022017-05-022017-12-022008-01-022010-12-022012-09-022009-10-022010-05-022018-07-022008-08-022009-03-022019-02-022019-09-022012-09-022018-07-022008-01-022009-03-022009-10-022010-05-022010-12-022011-07-022012-02-022013-04-022013-11-022014-06-022015-08-022016-03-022017-05-022017-12-022019-02-022019-09-022020-04-022015-01-022016-10-022008-08-022020-04-02美国:国债总额-LIBOR:美元:3个月-美国:国债收益率:3个月M2同比增速(季调,右轴资料来源:wind,东莞证券研究所资料来源:wind,东莞证券研究所4.2.2美元处于下行通道,驱动黄金价格上行美国在疫情未受控情况下,强行重启经济,新冠新增感染人数仍在高位,市场对美国经济修复是否通畅存有忧虑。西欧及日本疫情率先于美国得到控制,美元相对欧元、英锈走弱。美国实施规模空前的财政刺激,导致政府负债迅速攀升,美元信用度下降美元指数下行将驱动以美元计价的黄金价格走高。图9:美国新冠新增感染人数仍在高位(人/日)图10:欧、日、美新冠新增感染人数(人/日)17请务必阅读末页声明。
答案: wind,东莞证券研究所
       

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

38

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

54

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

10

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

36

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

21

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

35

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号