【悉读经典】SegFormer:语义分割中的层次化Transformer网络

P粉084495128
发布: 2025-07-22 10:39:31
原创
626人浏览过
本文介绍SegFormer语义分割网络,其有层次化Transformer编码器和轻量全MLP解码器两大创新。编码器生成多尺度特征,解码器融合特征。还说明基于PaddleSeg工具,用SegFormer对遥感影像地块分割进行训练、推理的过程,包括环境与数据准备、代码修改、网络训练和图片推理等步骤。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【悉读经典】segformer:语义分割中的层次化transformer网络 - php中文网

项目说明

SegFormer是2021年发布的语义分割网络,成功地在Transformer中引入层次结构,提取不同尺度信息,在语义分割任务中,其精度与速度均不逊于OCRNet,因此发布后广受欢迎

本项目先对SegFormer原始论文的关键内容进行简单摘录,并使用PaddleSeg代码进行辅助,方便对SegFormer网络结构有详细的理解

然后基于PaddleSeg工具,使用SegFormer对常规赛:遥感影像地块分割的影像进行训练、推理

《SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers》

参考链接:

pdf; url; code

管检测:

transformer;语义分割

关键创新点:

  • 提出一种 不需要位置编码的、层次化的 transformer 编码器
  • 提出一种 轻量级的、全MLP 的解码器,不需要复杂计算与高计算资源,就可以的到有效的特征表达

层次化的Transformer编码器:

SegFormer主要有2个模块:

  1. 层次化的transformer编码器/MiT,生成不同尺度特征
  2. 轻量的全MLP解码器,融合不同层级特征

层次化的特征表示

在SegFormer的编码器MiT中,其仿照CNN结构,通过在不同阶段进行下采样,生成多尺度特征。

MiT输入的图像尺寸为 H*W*3, 经过各个阶段的特征处理得到的特征图尺寸为

H2i+1W2i+1Ci+1,i{1,2,3,4}2i+1H∗2i+1W∗Ci+1,i∈{1,2,3,4}


       

代码中,各个阶段的下采样层定义如下:

# patch_embed,通过定义卷积操作的步长/stride,时相下采样self.patch_embed1 = OverlapPatchEmbed(    img_size=img_size,    patch_size=7,                   # stage1, 大卷积核7*7
    stride=4,                          # stage1, 4倍下采样
    in_chans=in_chans,    embed_dim=embed_dims[0])self.patch_embed2 = OverlapPatchEmbed(    img_size=img_size // 4,    patch_size=3,    stride=2,                          # stage2, 2倍下采样
    in_chans=embed_dims[0],    embed_dim=embed_dims[1])self.patch_embed3 = OverlapPatchEmbed(    img_size=img_size // 8,    patch_size=3,    stride=2,                          # stage3, 2倍下采样
    in_chans=embed_dims[1],    embed_dim=embed_dims[2])self.patch_embed4 = OverlapPatchEmbed(    img_size=img_size // 16,    patch_size=3,    stride=2,                          # stage4, 2倍下采样
    in_chans=embed_dims[2],    embed_dim=embed_dims[3])
登录后复制
       

有重叠的patch合并

SegFormer中的patch合并,仿照ViT中的池化方式,将2*2*Ci 的特征变为1*1*Ci+1,具体实现时,使用卷积下采样并进行通道变换,得到1*1*Ci+1。从而实现下采样、通道维数变化。

这一操作的设计初衷,是为了组合非重叠的图像或特征patch,因此不能保持patch周边的局部连续性。【各个patch是不重叠的,不能跨patch进行信息交互】

为了解决这一问题,本文提出重叠patch合并,并定义如下参数:
patch尺寸K、步长S、填充尺寸P,在网络中设置参了2套参数:K = 7, S = 4, P = 3 ;K = 3, S = 2, P = 1【在stage1中使用大尺寸、大步长生成的patch,可以快速压缩空间信息,实现下采样,便于进行特征计算】


       

代码中,重叠patch合并层定义如下:

class OverlapPatchEmbed(nn.Layer):
    def __init__(self,                 img_size=224,
                 patch_size=7,          # 卷积核大小
                 stride=4,                 # 下采样倍数
                 in_chans=3,            # 输入通道数
                 embed_dim=768):  # 输出通道数
        super().__init__()        img_size = to_2tuple(img_size)        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[            1] // patch_size[1]
        self.num_patches = self.H * self.W        # 定义投影变换所用的卷积
        self.proj = nn.Conv2D(
            in_chans,
            embed_dim,            kernel_size=patch_size,
            stride=stride,
            padding=(patch_size[0] // 2, patch_size[1] // 2))        # 定义layer norm层
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):        x = self.proj(x)    # 通过卷积进行特征重投影,实现下采样、通道变换
        x_shape = paddle.shape(x)
        H, W = x_shape[2], x_shape[3]        x = x.flatten(2).transpose([0, 2, 1])  # 将H*W维度压缩成1个维度
        x = self.norm(x)          # 标准化

        return x, H, W
登录后复制
       

高效的自关注机制

编码器部分的主要计算消耗在于 自关注层/self-attention。

原在始的自关注过程中,Q、K、C的维度均为N*C,N=H*W,自关注原始计算如下:

Attention(Q,K,V)=Softmax(QKTdhead)VAttention(Q,K,V)=Softmax(dheadQKT)V

而该公式的计算复杂度为O(N2),计算消耗高,且与图像尺寸相关,因此不适用于高分辨率图像。

本文提出一种改进方式,在计算attention时,参考CNN中的处理,使用下采样率R对K进行处理,改进的计算过程如下:

百度文心百中
百度文心百中

百度大模型语义搜索体验中心

百度文心百中 22
查看详情 百度文心百中

K^=Reshape(NR,CR)(K)K=Reshape(RN,C⋅R)(K)

K=Linear(CR,C)(K^)K′=Linear(C⋅R,C)(K)

其中,K是输入的映射特征,K^K是K维度变换后的特征,K'是降维后的特征。
【通过将K进行reshape将空间维度N的信息转移到通道维度C上,可以得到K^K;然后通过定义的线性变换层将通道为降到原始维度C上,得到K',实现空间下采样。】

通过上述操作计算复杂度降到O(N2/ R),大大降低了计算复杂度,在SegFormer中中,将各阶段的设置R为[64, 16, 4, 1]


       

代码中,改进后的Attention定义如下:

class Attention(nn.Layer):
    def __init__(self,                 dim,                 num_heads=8,                 qkv_bias=False,                 qk_scale=None,                 attn_drop=0.,                 proj_drop=0.,                 sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
        self.dim = dim
        
        # 定义q映射
        self.q = nn.Linear(dim, dim, bias_attr=qkv_bias)
        # 定义kv映射
        self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        # 定义输入特征的残差映射
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2D(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)     
            self.norm = nn.LayerNorm(dim)

    def forward(self, x, H, W):
        x_shape = paddle.shape(x)        B, N = x_shape[0], x_shape[1]        C = self.dim
        
        # 输入特征通过映射得到q
        q = self.q(x).reshape([B, N, self.num_heads,C // self.num_heads]).transpose([0, 2, 1, 3])
        
        # 输入特征通过映射得到k v
        if self.sr_ratio > 1:
            x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W])
            x_ = self.sr(x_).reshape([B, C, -1]).transpose([0, 2, 1])         # 下采样
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape([B, -1, 2, self.num_heads,C // self.num_heads]).transpose([2, 0, 3, 1, 4])
        else:
            kv = self.kv(x).reshape([B, -1, 2, self.num_heads,C // self.num_heads]).transpose([2, 0, 3, 1, 4])
        k, v = kv[0], kv[1]
        
        # att计算,q*k/sqrt(d)
        attn = (q @ k.transpose([0, 1, 3, 2])) * self.scale
        attn = F.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)
        
        # att权重与x融合
        x = (attn @ v).transpose([0, 2, 1, 3]).reshape([B, N, C])
        # 关注后处理
        x = self.proj(x)
        x = self.proj_drop(x)

        return x
登录后复制
       

Mix-FFN

ViT使用位置编码引入位置信息,但由于在测试时的分辨率发生变化时,会引起精度下降的问题。

本文任务位置信息在语义分割中不是必需的,因此提出Mix-FFN:直接使用3*3卷积对输入特征进行处理,并考虑了用0进行填充导致的局部信息泄漏。计算过程如下:

xout=MLP(GELU(Conv33(MLP(xin))))+xinxout=MLP(GELU(Conv3∗3(MLP(xin))))+xin

其中xinxin是自关注模块生成的结果,Mix-FNN混合了3*3卷积与MLP,并进一步使用了深度分离卷积减少参数量、提高效率
       

代码中,Mix-FNN定义如下:

class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)    def forward(self, x, H, W):
        x = self.fc1(x)                    # 线性变换/MLP
        x = self.dwconv(x, H, W)  # 卷积/Conv3*3
        x = self.act(x)                   # GELU
        x = self.drop(x)
        x = self.fc2(x)                   # 线性变换/MLP
        x = self.drop(x)        return x
登录后复制
       

Lightweight All-MLP Decoder:

在解码器部分,SegFormer采用了简单的结构,仅由MLP组成,减少了手动设计、计算需求高等问题,主要包括4步:

  1. 对多尺度特征进行通道维度变换,统一维度:通过MLP进行维度变换
  2. 对多尺度特征进行空间维度变换,统一尺寸:通过插值上采样进行尺寸变换
  3. 特征拼接与通道压缩:通过MLP进行通道压缩
  4. 分类预测:1*1卷积
class SegFormer(nn.Layer):

    def __init__(self,
                 num_classes,
                 backbone,
                 embedding_dim,                 align_corners=False,
                 pretrained=None):
        super(SegFormer, self).__init__()

        self.pretrained = pretrained
        self.align_corners = align_corners
        self.backbone = backbone
        self.num_classes = num_classes
        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.backbone.feat_channels

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)

        self.dropout = nn.Dropout2D(0.1)
        self.linear_fuse = layers.ConvBNReLU(            in_channels=embedding_dim * 4,            out_channels=embedding_dim,
            kernel_size=1,
            bias_attr=False)

        self.linear_pred = nn.Conv2D(
            embedding_dim, self.num_classes, kernel_size=1)

    def forward(self, x):        feats = self.backbone(x)
        c1, c2, c3, c4 = feats        ############## MLP decoder on C1-C4 ###########
        c1_shape = paddle.shape(c1)        c2_shape = paddle.shape(c2)        c3_shape = paddle.shape(c3)        c4_shape = paddle.shape(c4)        
        # 统一stage4的维度、尺寸
        _c4 = self.linear_c4(c4).transpose([0, 2, 1]).reshape([0, 0, c4_shape[2], c4_shape[3]])        _c4 = F.interpolate(
            _c4,            size=c1_shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        
        # 统一stage3的维度、尺寸
        _c3 = self.linear_c3(c3).transpose([0, 2, 1]).reshape([0, 0, c3_shape[2], c3_shape[3]])        _c3 = F.interpolate(
            _c3,            size=c1_shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        
        # 统一stage2的维度、尺寸
        _c2 = self.linear_c2(c2).transpose([0, 2, 1]).reshape([0, 0, c2_shape[2], c2_shape[3]])        _c2 = F.interpolate(
            _c2,            size=c1_shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        
        # 统一stage1维度、尺寸
        _c1 = self.linear_c1(c1).transpose([0, 2, 1]).reshape(
            [0, 0, c1_shape[2], c1_shape[3]])        
        # 特征拼接与通道压缩
        _c = self.linear_fuse(paddle.concat([_c4, _c3, _c2, _c1], axis=1))
        logit = self.dropout(_c)        
        #分类预测
        logit = self.linear_pred(logit)
        return [
            F.interpolate(
                logit,                size=paddle.shape(x)[2:],
                mode='bilinear',
                align_corners=self.align_corners)
        ]
登录后复制
       

Effective Receptive Field Analysis

语义分割任务中,保持大感受野是关键,本文分析了不同阶段的感受野,如下图:

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

在stage4阶段,DeepLabV3+的感受野小于SegFormer

SegFormer的编码器,在浅层阶段,可以产生类似于卷积一样的局部关注,并输出非局部关注,从而有效捕获stage4的上下文信息

在上采样阶段,Head的感受野除了具有非局部关注外,还有较强的局部关注。

Experiments

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

上图是SegFormer在ADE20K、Cityscapes数据集上与不同模型的参数量、精度。

       

SegFormer B4的Cityscapes miou精度已达到84%,属于SOTA水准,大于OCRNet HRNet48的81.1

【conclusion】

之前的语义分割中常用OCRNet48,虽然精度很高,但由于多尺度、多阶段的特征处理结构,计算速度慢、网络收敛慢。

在使用了SegFormer b3后,发现其与OCRNet48精度相差无几,并且显存占用相对较少、收敛快,在相同时间、显存下,可以加大batchsize与epoch。对于数据量较多,或者对推理速度有限制的应用情境下,SegFormer 是更优选择。

虽然SegFormer在语义冯上的表现已足够优秀,编码器MiT成功借鉴了CNN的层次结构应用在transformer中,但解码器较为简单,仍然存在提高的空间。

在PaddleSeg中使用ConvNeXt进行特征提取实现语义分割

环境准备

In [1]
# pip升级!pip install --user --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple# 下载仓库,并切换到2.4版本%cd /home/aistudio/
!git clone https://gitee.com/paddlepaddle/PaddleSeg.git #该行仅在初次运行项目时运行即可,后续不需要运行改行命令%cd /home/aistudio/PaddleSeg
!git checkout -b release/2.4 origin/release/2.4# 安装依赖!pip install -r requirements.txt
登录后复制
       
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pip in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (22.0.4)
/home/aistudio
fatal: 目标路径 'PaddleSeg' 已经存在,并且不是一个空目录。
/home/aistudio/PaddleSeg
fatal: 一个分支名 'release/2.4' 已经存在。
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pre-commit in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (1.21.0)
Requirement already satisfied: yapf==0.26.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (0.26.0)
Requirement already satisfied: flake8 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 3)) (4.0.1)
Requirement already satisfied: pyyaml>=5.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 4)) (5.1.2)
Requirement already satisfied: visualdl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 5)) (2.2.3)
Requirement already satisfied: opencv-python in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 6)) (4.1.1.26)
Requirement already satisfied: tqdm in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 7)) (4.27.0)
Requirement already satisfied: filelock in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 8)) (3.0.12)
Requirement already satisfied: scipy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 9)) (1.6.3)
Requirement already satisfied: prettytable in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 10)) (0.7.2)
Requirement already satisfied: sklearn in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 11)) (0.0)
Requirement already satisfied: six in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.16.0)
Requirement already satisfied: cfgv>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (2.0.1)
Requirement already satisfied: nodeenv>=0.11.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.3.4)
Requirement already satisfied: aspy.yaml in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.3.0)
Requirement already satisfied: virtualenv>=15.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (16.7.9)
Requirement already satisfied: toml in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (0.10.0)
Requirement already satisfied: identify>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.4.10)
Requirement already satisfied: importlib-metadata in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (4.2.0)
Requirement already satisfied: pyflakes<2.5.0,>=2.4.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8->-r requirements.txt (line 3)) (2.4.0)
Requirement already satisfied: pycodestyle<2.9.0,>=2.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8->-r requirements.txt (line 3)) (2.8.0)
Requirement already satisfied: mccabe<0.7.0,>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8->-r requirements.txt (line 3)) (0.6.1)
Requirement already satisfied: flask>=1.1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.1)
Requirement already satisfied: numpy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.19.5)
Requirement already satisfied: protobuf>=3.11.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (3.14.0)
Requirement already satisfied: pandas in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.5)
Requirement already satisfied: requests in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (2.24.0)
Requirement already satisfied: matplotlib in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (2.2.3)
Requirement already satisfied: bce-python-sdk in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (0.8.53)
Requirement already satisfied: shellcheck-py in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (0.7.1.1)
Requirement already satisfied: Pillow>=7.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (8.2.0)
Requirement already satisfied: Flask-Babel>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.0.0)
Requirement already satisfied: scikit-learn in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from sklearn->-r requirements.txt (line 11)) (0.24.2)
Requirement already satisfied: Werkzeug>=0.15 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (0.16.0)
Requirement already satisfied: itsdangerous>=0.24 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.0)
Requirement already satisfied: Jinja2>=2.10.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.0.0)
Requirement already satisfied: click>=5.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (7.0)
Requirement already satisfied: Babel>=2.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babel>=1.0.0->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.9.1)
Requirement already satisfied: pytz in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babel>=1.0.0->visualdl>=2.0.0->-r requirements.txt (line 5)) (2022.1)
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from importlib-metadata->pre-commit->-r requirements.txt (line 1)) (3.7.0)
Requirement already satisfied: typing-extensions>=3.6.4 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from importlib-metadata->pre-commit->-r requirements.txt (line 1)) (4.1.1)
Requirement already satisfied: pycryptodome>=3.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.9.9)
Requirement already satisfied: future>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl>=2.0.0->-r requirements.txt (line 5)) (0.18.0)
Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.0)
Requirement already satisfied: cycler>=0.10 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.0.7)
Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (1.25.11)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (2021.10.8)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.10)
Requirement already satisfied: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn->sklearn->-r requirements.txt (line 11)) (0.14.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn->sklearn->-r requirements.txt (line 11)) (2.1.0)
Requirement already satisfied: MarkupSafe>=2.0.0rc2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Jinja2>=2.10.1->flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.0.1)
Requirement already satisfied: setuptools in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (56.2.0)
登录后复制
       

数据准备

In [ ]
# 耗时约35秒!unzip -oq /home/aistudio/data/data77571/train_and_label.zip -d /home/aistudio/data/src/
!unzip -oq /home/aistudio/data/data77571/img_test.zip -d /home/aistudio/data/src/
登录后复制
   
In [ ]
# 生产数据集划分txt# 演示时使用比例0.98:0.02!python /home/aistudio/work/segmentation/data_split.py \        0.98 0.02 0 \
        /home/aistudio/data/src/img_train \
        /home/aistudio/data/src/lab_train# # 实践时使用比例0.2:0.2# !python /home/aistudio/work/segmentation/data_split.py \#         0.8 0.2 0 \#         /home/aistudio/data/src/img_train \#         /home/aistudio/data/src/lab_train
登录后复制
   

代码准备

In [ ]
# 修改文件!cp /home/aistudio/work/segmentation/segformerb3.yml /home/aistudio/PaddleSeg/segformerb3.yml
!cp /home/aistudio/work/segmentation/utils.py /home/aistudio/PaddleSeg/paddleseg/utils/utils.py                         # 加载tif数据与模型参数!cp /home/aistudio/work/segmentation/predict.py /home/aistudio/PaddleSeg/paddleseg/core/predict.py                      # 预测类别结果保存!cp /home/aistudio/work/segmentation/transformer_utils.py /home/aistudio/PaddleSeg/paddleseg/models/backbones/transformer_utils.py # 修复数据类型bug
登录后复制
   

网络训练

In [ ]
# 演示时使用的训练超参数,约5分钟!python /home/aistudio/PaddleSeg/train.py \
    --config  /home/aistudio/PaddleSeg/segformerb3.yml \
    --save_dir /home/aistudio/data/output_seg \
    --do_eval \
    --use_vdl \
    --batch_size 32 \
    --iters 100 \
    --save_interval 50 \
    --log_iters 10 \
    --fp16 

# # 实践时使用的训练超参数,约20+小时# !python /home/aistudio/PaddleSeg/train.py \#     --config  /home/aistudio/PaddleSeg/segformerb3.yml \#     --save_dir /home/aistudio/data/output_seg \#     --do_eval \#     --use_vdl \#     --batch_size 32 \#     --iters 100000 \#     --save_interval 2100 \#     --log_iters 100 \#     --fp16
登录后复制
   
In [2]
# 将训练参数转移到best_model/seg下!mkdir /home/aistudio/best_model
!mkdir /home/aistudio/best_model/seg
!cp /home/aistudio/data/output_seg/best_model/model.pdparams /home/aistudio/best_model/seg/model.pdparams
登录后复制
       
mkdir: 无法创建目录"/home/aistudio/best_model/seg": 没有那个文件或目录
cp: 无法获取'/home/aistudio/data/output_seg/best_model/model.pdparams' 的文件状态(stat): 没有那个文件或目录
登录后复制
       

图片推理

In [ ]
# 结果保存在/home/aistudio/data/infer_seg下!python /home/aistudio/PaddleSeg/predict.py \
       --config /home/aistudio/PaddleSeg/segformerb3.yml \
       --model_path /home/aistudio/best_model/seg/model.pdparams \
       --image_path /home/aistudio/data/src/img_testA \
       --save_dir /home/aistudio/data/infer_seg
登录后复制
   

预测结果/训练5分钟

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

以上就是【悉读经典】SegFormer:语义分割中的层次化Transformer网络的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号