0

0

【悉读经典】SegFormer:语义分割中的层次化Transformer网络

P粉084495128

P粉084495128

发布时间:2025-07-22 10:39:31

|

665人浏览过

|

来源于php中文网

原创

本文介绍SegFormer语义分割网络,其有层次化Transformer编码器和轻量全MLP解码器两大创新。编码器生成多尺度特征,解码器融合特征。还说明基于PaddleSeg工具,用SegFormer对遥感影像地块分割进行训练、推理的过程,包括环境与数据准备、代码修改、网络训练和图片推理等步骤。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【悉读经典】segformer:语义分割中的层次化transformer网络 - php中文网

项目说明

SegFormer是2021年发布的语义分割网络,成功地在Transformer中引入层次结构,提取不同尺度信息,在语义分割任务中,其精度与速度均不逊于OCRNet,因此发布后广受欢迎

本项目先对SegFormer原始论文的关键内容进行简单摘录,并使用PaddleSeg代码进行辅助,方便对SegFormer网络结构有详细的理解

然后基于PaddleSeg工具,使用SegFormer对常规赛:遥感影像地块分割的影像进行训练、推理

《SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers》

参考链接:

pdf; url; code

管检测:

transformer;语义分割

关键创新点:

  • 提出一种 不需要位置编码的、层次化的 transformer 编码器
  • 提出一种 轻量级的、全MLP 的解码器,不需要复杂计算与高计算资源,就可以的到有效的特征表达

层次化的Transformer编码器:

SegFormer主要有2个模块:

  1. 层次化的transformer编码器/MiT,生成不同尺度特征
  2. 轻量的全MLP解码器,融合不同层级特征

层次化的特征表示

在SegFormer的编码器MiT中,其仿照CNN结构,通过在不同阶段进行下采样,生成多尺度特征。

MiT输入的图像尺寸为 H*W*3, 经过各个阶段的特征处理得到的特征图尺寸为

H2i+1W2i+1Ci+1,i{1,2,3,4}2i+1H∗2i+1W∗Ci+1,i∈{1,2,3,4}


       

代码中,各个阶段的下采样层定义如下:

# patch_embed,通过定义卷积操作的步长/stride,时相下采样self.patch_embed1 = OverlapPatchEmbed(    img_size=img_size,    patch_size=7,                   # stage1, 大卷积核7*7
    stride=4,                          # stage1, 4倍下采样
    in_chans=in_chans,    embed_dim=embed_dims[0])self.patch_embed2 = OverlapPatchEmbed(    img_size=img_size // 4,    patch_size=3,    stride=2,                          # stage2, 2倍下采样
    in_chans=embed_dims[0],    embed_dim=embed_dims[1])self.patch_embed3 = OverlapPatchEmbed(    img_size=img_size // 8,    patch_size=3,    stride=2,                          # stage3, 2倍下采样
    in_chans=embed_dims[1],    embed_dim=embed_dims[2])self.patch_embed4 = OverlapPatchEmbed(    img_size=img_size // 16,    patch_size=3,    stride=2,                          # stage4, 2倍下采样
    in_chans=embed_dims[2],    embed_dim=embed_dims[3])
       

有重叠的patch合并

SegFormer中的patch合并,仿照ViT中的池化方式,将2*2*Ci 的特征变为1*1*Ci+1,具体实现时,使用卷积下采样并进行通道变换,得到1*1*Ci+1。从而实现下采样、通道维数变化。

这一操作的设计初衷,是为了组合非重叠的图像或特征patch,因此不能保持patch周边的局部连续性。【各个patch是不重叠的,不能跨patch进行信息交互】

为了解决这一问题,本文提出重叠patch合并,并定义如下参数:
patch尺寸K、步长S、填充尺寸P,在网络中设置参了2套参数:K = 7, S = 4, P = 3 ;K = 3, S = 2, P = 1【在stage1中使用大尺寸、大步长生成的patch,可以快速压缩空间信息,实现下采样,便于进行特征计算】


       

代码中,重叠patch合并层定义如下:

class OverlapPatchEmbed(nn.Layer):
    def __init__(self,                 img_size=224,
                 patch_size=7,          # 卷积核大小
                 stride=4,                 # 下采样倍数
                 in_chans=3,            # 输入通道数
                 embed_dim=768):  # 输出通道数
        super().__init__()        img_size = to_2tuple(img_size)        patch_size = to_2tuple(patch_size)

        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[            1] // patch_size[1]
        self.num_patches = self.H * self.W        # 定义投影变换所用的卷积
        self.proj = nn.Conv2D(
            in_chans,
            embed_dim,            kernel_size=patch_size,
            stride=stride,
            padding=(patch_size[0] // 2, patch_size[1] // 2))        # 定义layer norm层
        self.norm = nn.LayerNorm(embed_dim)

    def forward(self, x):        x = self.proj(x)    # 通过卷积进行特征重投影,实现下采样、通道变换
        x_shape = paddle.shape(x)
        H, W = x_shape[2], x_shape[3]        x = x.flatten(2).transpose([0, 2, 1])  # 将H*W维度压缩成1个维度
        x = self.norm(x)          # 标准化

        return x, H, W
       

高效的自关注机制

编码器部分的主要计算消耗在于 自关注层/self-attention。

原在始的自关注过程中,Q、K、C的维度均为N*C,N=H*W,自关注原始计算如下:

Attention(Q,K,V)=Softmax(QKTdhead)VAttention(Q,K,V)=Softmax(dheadQKT)V

而该公式的计算复杂度为O(N2),计算消耗高,且与图像尺寸相关,因此不适用于高分辨率图像。

本文提出一种改进方式,在计算attention时,参考CNN中的处理,使用下采样率R对K进行处理,改进的计算过程如下:

Shakespeare
Shakespeare

一款人工智能文案软件,能够创建几乎任何类型的文案。

下载

K^=Reshape(NR,CR)(K)K=Reshape(RN,C⋅R)(K)

K=Linear(CR,C)(K^)K′=Linear(C⋅R,C)(K)

其中,K是输入的映射特征,K^K是K维度变换后的特征,K'是降维后的特征。
【通过将K进行reshape将空间维度N的信息转移到通道维度C上,可以得到K^K;然后通过定义的线性变换层将通道为降到原始维度C上,得到K',实现空间下采样。】

通过上述操作计算复杂度降到O(N2/ R),大大降低了计算复杂度,在SegFormer中中,将各阶段的设置R为[64, 16, 4, 1]


       

代码中,改进后的Attention定义如下:

class Attention(nn.Layer):
    def __init__(self,                 dim,                 num_heads=8,                 qkv_bias=False,                 qk_scale=None,                 attn_drop=0.,                 proj_drop=0.,                 sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."

        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5
        self.dim = dim
        
        # 定义q映射
        self.q = nn.Linear(dim, dim, bias_attr=qkv_bias)
        # 定义kv映射
        self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        # 定义输入特征的残差映射
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2D(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)     
            self.norm = nn.LayerNorm(dim)

    def forward(self, x, H, W):
        x_shape = paddle.shape(x)        B, N = x_shape[0], x_shape[1]        C = self.dim
        
        # 输入特征通过映射得到q
        q = self.q(x).reshape([B, N, self.num_heads,C // self.num_heads]).transpose([0, 2, 1, 3])
        
        # 输入特征通过映射得到k v
        if self.sr_ratio > 1:
            x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W])
            x_ = self.sr(x_).reshape([B, C, -1]).transpose([0, 2, 1])         # 下采样
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape([B, -1, 2, self.num_heads,C // self.num_heads]).transpose([2, 0, 3, 1, 4])
        else:
            kv = self.kv(x).reshape([B, -1, 2, self.num_heads,C // self.num_heads]).transpose([2, 0, 3, 1, 4])
        k, v = kv[0], kv[1]
        
        # att计算,q*k/sqrt(d)
        attn = (q @ k.transpose([0, 1, 3, 2])) * self.scale
        attn = F.softmax(attn, axis=-1)
        attn = self.attn_drop(attn)
        
        # att权重与x融合
        x = (attn @ v).transpose([0, 2, 1, 3]).reshape([B, N, C])
        # 关注后处理
        x = self.proj(x)
        x = self.proj_drop(x)

        return x
       

Mix-FFN

ViT使用位置编码引入位置信息,但由于在测试时的分辨率发生变化时,会引起精度下降的问题。

本文任务位置信息在语义分割中不是必需的,因此提出Mix-FFN:直接使用3*3卷积对输入特征进行处理,并考虑了用0进行填充导致的局部信息泄漏。计算过程如下:

xout=MLP(GELU(Conv33(MLP(xin))))+xinxout=MLP(GELU(Conv3∗3(MLP(xin))))+xin

其中xinxin是自关注模块生成的结果,Mix-FNN混合了3*3卷积与MLP,并进一步使用了深度分离卷积减少参数量、提高效率
       

代码中,Mix-FNN定义如下:

class Mlp(nn.Layer):
    def __init__(self,
                 in_features,
                 hidden_features=None,
                 out_features=None,
                 act_layer=nn.GELU,
                 drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)    def forward(self, x, H, W):
        x = self.fc1(x)                    # 线性变换/MLP
        x = self.dwconv(x, H, W)  # 卷积/Conv3*3
        x = self.act(x)                   # GELU
        x = self.drop(x)
        x = self.fc2(x)                   # 线性变换/MLP
        x = self.drop(x)        return x
       

Lightweight All-MLP Decoder:

在解码器部分,SegFormer采用了简单的结构,仅由MLP组成,减少了手动设计、计算需求高等问题,主要包括4步:

  1. 对多尺度特征进行通道维度变换,统一维度:通过MLP进行维度变换
  2. 对多尺度特征进行空间维度变换,统一尺寸:通过插值上采样进行尺寸变换
  3. 特征拼接与通道压缩:通过MLP进行通道压缩
  4. 分类预测:1*1卷积
class SegFormer(nn.Layer):

    def __init__(self,
                 num_classes,
                 backbone,
                 embedding_dim,                 align_corners=False,
                 pretrained=None):
        super(SegFormer, self).__init__()

        self.pretrained = pretrained
        self.align_corners = align_corners
        self.backbone = backbone
        self.num_classes = num_classes
        c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.backbone.feat_channels

        self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim)
        self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim)
        self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim)
        self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim)

        self.dropout = nn.Dropout2D(0.1)
        self.linear_fuse = layers.ConvBNReLU(            in_channels=embedding_dim * 4,            out_channels=embedding_dim,
            kernel_size=1,
            bias_attr=False)

        self.linear_pred = nn.Conv2D(
            embedding_dim, self.num_classes, kernel_size=1)

    def forward(self, x):        feats = self.backbone(x)
        c1, c2, c3, c4 = feats        ############## MLP decoder on C1-C4 ###########
        c1_shape = paddle.shape(c1)        c2_shape = paddle.shape(c2)        c3_shape = paddle.shape(c3)        c4_shape = paddle.shape(c4)        
        # 统一stage4的维度、尺寸
        _c4 = self.linear_c4(c4).transpose([0, 2, 1]).reshape([0, 0, c4_shape[2], c4_shape[3]])        _c4 = F.interpolate(
            _c4,            size=c1_shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        
        # 统一stage3的维度、尺寸
        _c3 = self.linear_c3(c3).transpose([0, 2, 1]).reshape([0, 0, c3_shape[2], c3_shape[3]])        _c3 = F.interpolate(
            _c3,            size=c1_shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        
        # 统一stage2的维度、尺寸
        _c2 = self.linear_c2(c2).transpose([0, 2, 1]).reshape([0, 0, c2_shape[2], c2_shape[3]])        _c2 = F.interpolate(
            _c2,            size=c1_shape[2:],
            mode='bilinear',
            align_corners=self.align_corners)
        
        # 统一stage1维度、尺寸
        _c1 = self.linear_c1(c1).transpose([0, 2, 1]).reshape(
            [0, 0, c1_shape[2], c1_shape[3]])        
        # 特征拼接与通道压缩
        _c = self.linear_fuse(paddle.concat([_c4, _c3, _c2, _c1], axis=1))
        logit = self.dropout(_c)        
        #分类预测
        logit = self.linear_pred(logit)
        return [
            F.interpolate(
                logit,                size=paddle.shape(x)[2:],
                mode='bilinear',
                align_corners=self.align_corners)
        ]
       

Effective Receptive Field Analysis

语义分割任务中,保持大感受野是关键,本文分析了不同阶段的感受野,如下图:

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

在stage4阶段,DeepLabV3+的感受野小于SegFormer

SegFormer的编码器,在浅层阶段,可以产生类似于卷积一样的局部关注,并输出非局部关注,从而有效捕获stage4的上下文信息

在上采样阶段,Head的感受野除了具有非局部关注外,还有较强的局部关注。

Experiments

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

上图是SegFormer在ADE20K、Cityscapes数据集上与不同模型的参数量、精度。

       

SegFormer B4的Cityscapes miou精度已达到84%,属于SOTA水准,大于OCRNet HRNet48的81.1

【conclusion】

之前的语义分割中常用OCRNet48,虽然精度很高,但由于多尺度、多阶段的特征处理结构,计算速度慢、网络收敛慢。

在使用了SegFormer b3后,发现其与OCRNet48精度相差无几,并且显存占用相对较少、收敛快,在相同时间、显存下,可以加大batchsize与epoch。对于数据量较多,或者对推理速度有限制的应用情境下,SegFormer 是更优选择。

虽然SegFormer在语义冯上的表现已足够优秀,编码器MiT成功借鉴了CNN的层次结构应用在transformer中,但解码器较为简单,仍然存在提高的空间。

在PaddleSeg中使用ConvNeXt进行特征提取实现语义分割

环境准备

In [1]
# pip升级!pip install --user --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple# 下载仓库,并切换到2.4版本%cd /home/aistudio/
!git clone https://gitee.com/paddlepaddle/PaddleSeg.git #该行仅在初次运行项目时运行即可,后续不需要运行改行命令%cd /home/aistudio/PaddleSeg
!git checkout -b release/2.4 origin/release/2.4# 安装依赖!pip install -r requirements.txt
       
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pip in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (22.0.4)
/home/aistudio
fatal: 目标路径 'PaddleSeg' 已经存在,并且不是一个空目录。
/home/aistudio/PaddleSeg
fatal: 一个分支名 'release/2.4' 已经存在。
Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
Requirement already satisfied: pre-commit in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 1)) (1.21.0)
Requirement already satisfied: yapf==0.26.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 2)) (0.26.0)
Requirement already satisfied: flake8 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 3)) (4.0.1)
Requirement already satisfied: pyyaml>=5.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 4)) (5.1.2)
Requirement already satisfied: visualdl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 5)) (2.2.3)
Requirement already satisfied: opencv-python in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 6)) (4.1.1.26)
Requirement already satisfied: tqdm in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 7)) (4.27.0)
Requirement already satisfied: filelock in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 8)) (3.0.12)
Requirement already satisfied: scipy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 9)) (1.6.3)
Requirement already satisfied: prettytable in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 10)) (0.7.2)
Requirement already satisfied: sklearn in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from -r requirements.txt (line 11)) (0.0)
Requirement already satisfied: six in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.16.0)
Requirement already satisfied: cfgv>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (2.0.1)
Requirement already satisfied: nodeenv>=0.11.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.3.4)
Requirement already satisfied: aspy.yaml in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.3.0)
Requirement already satisfied: virtualenv>=15.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (16.7.9)
Requirement already satisfied: toml in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (0.10.0)
Requirement already satisfied: identify>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (1.4.10)
Requirement already satisfied: importlib-metadata in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pre-commit->-r requirements.txt (line 1)) (4.2.0)
Requirement already satisfied: pyflakes<2.5.0,>=2.4.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8->-r requirements.txt (line 3)) (2.4.0)
Requirement already satisfied: pycodestyle<2.9.0,>=2.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8->-r requirements.txt (line 3)) (2.8.0)
Requirement already satisfied: mccabe<0.7.0,>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flake8->-r requirements.txt (line 3)) (0.6.1)
Requirement already satisfied: flask>=1.1.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.1)
Requirement already satisfied: numpy in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.19.5)
Requirement already satisfied: protobuf>=3.11.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (3.14.0)
Requirement already satisfied: pandas in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.5)
Requirement already satisfied: requests in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (2.24.0)
Requirement already satisfied: matplotlib in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (2.2.3)
Requirement already satisfied: bce-python-sdk in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (0.8.53)
Requirement already satisfied: shellcheck-py in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (0.7.1.1)
Requirement already satisfied: Pillow>=7.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (8.2.0)
Requirement already satisfied: Flask-Babel>=1.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from visualdl>=2.0.0->-r requirements.txt (line 5)) (1.0.0)
Requirement already satisfied: scikit-learn in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from sklearn->-r requirements.txt (line 11)) (0.24.2)
Requirement already satisfied: Werkzeug>=0.15 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (0.16.0)
Requirement already satisfied: itsdangerous>=0.24 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.0)
Requirement already satisfied: Jinja2>=2.10.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.0.0)
Requirement already satisfied: click>=5.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (7.0)
Requirement already satisfied: Babel>=2.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babel>=1.0.0->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.9.1)
Requirement already satisfied: pytz in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Flask-Babel>=1.0.0->visualdl>=2.0.0->-r requirements.txt (line 5)) (2022.1)
Requirement already satisfied: zipp>=0.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from importlib-metadata->pre-commit->-r requirements.txt (line 1)) (3.7.0)
Requirement already satisfied: typing-extensions>=3.6.4 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from importlib-metadata->pre-commit->-r requirements.txt (line 1)) (4.1.1)
Requirement already satisfied: pycryptodome>=3.8.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.9.9)
Requirement already satisfied: future>=0.6.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from bce-python-sdk->visualdl>=2.0.0->-r requirements.txt (line 5)) (0.18.0)
Requirement already satisfied: python-dateutil>=2.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (1.1.0)
Requirement already satisfied: cycler>=0.10 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (0.10.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.0.7)
Requirement already satisfied: chardet<4,>=3.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (3.0.4)
Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (1.25.11)
Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (2021.10.8)
Requirement already satisfied: idna<3,>=2.5 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from requests->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.10)
Requirement already satisfied: joblib>=0.11 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn->sklearn->-r requirements.txt (line 11)) (0.14.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from scikit-learn->sklearn->-r requirements.txt (line 11)) (2.1.0)
Requirement already satisfied: MarkupSafe>=2.0.0rc2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from Jinja2>=2.10.1->flask>=1.1.1->visualdl>=2.0.0->-r requirements.txt (line 5)) (2.0.1)
Requirement already satisfied: setuptools in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from kiwisolver>=1.0.1->matplotlib->visualdl>=2.0.0->-r requirements.txt (line 5)) (56.2.0)
       

数据准备

In [ ]
# 耗时约35秒!unzip -oq /home/aistudio/data/data77571/train_and_label.zip -d /home/aistudio/data/src/
!unzip -oq /home/aistudio/data/data77571/img_test.zip -d /home/aistudio/data/src/
   
In [ ]
# 生产数据集划分txt# 演示时使用比例0.98:0.02!python /home/aistudio/work/segmentation/data_split.py \        0.98 0.02 0 \
        /home/aistudio/data/src/img_train \
        /home/aistudio/data/src/lab_train# # 实践时使用比例0.2:0.2# !python /home/aistudio/work/segmentation/data_split.py \#         0.8 0.2 0 \#         /home/aistudio/data/src/img_train \#         /home/aistudio/data/src/lab_train
   

代码准备

In [ ]
# 修改文件!cp /home/aistudio/work/segmentation/segformerb3.yml /home/aistudio/PaddleSeg/segformerb3.yml
!cp /home/aistudio/work/segmentation/utils.py /home/aistudio/PaddleSeg/paddleseg/utils/utils.py                         # 加载tif数据与模型参数!cp /home/aistudio/work/segmentation/predict.py /home/aistudio/PaddleSeg/paddleseg/core/predict.py                      # 预测类别结果保存!cp /home/aistudio/work/segmentation/transformer_utils.py /home/aistudio/PaddleSeg/paddleseg/models/backbones/transformer_utils.py # 修复数据类型bug
   

网络训练

In [ ]
# 演示时使用的训练超参数,约5分钟!python /home/aistudio/PaddleSeg/train.py \
    --config  /home/aistudio/PaddleSeg/segformerb3.yml \
    --save_dir /home/aistudio/data/output_seg \
    --do_eval \
    --use_vdl \
    --batch_size 32 \
    --iters 100 \
    --save_interval 50 \
    --log_iters 10 \
    --fp16 

# # 实践时使用的训练超参数,约20+小时# !python /home/aistudio/PaddleSeg/train.py \#     --config  /home/aistudio/PaddleSeg/segformerb3.yml \#     --save_dir /home/aistudio/data/output_seg \#     --do_eval \#     --use_vdl \#     --batch_size 32 \#     --iters 100000 \#     --save_interval 2100 \#     --log_iters 100 \#     --fp16
   
In [2]
# 将训练参数转移到best_model/seg下!mkdir /home/aistudio/best_model
!mkdir /home/aistudio/best_model/seg
!cp /home/aistudio/data/output_seg/best_model/model.pdparams /home/aistudio/best_model/seg/model.pdparams
       
mkdir: 无法创建目录"/home/aistudio/best_model/seg": 没有那个文件或目录
cp: 无法获取'/home/aistudio/data/output_seg/best_model/model.pdparams' 的文件状态(stat): 没有那个文件或目录
       

图片推理

In [ ]
# 结果保存在/home/aistudio/data/infer_seg下!python /home/aistudio/PaddleSeg/predict.py \
       --config /home/aistudio/PaddleSeg/segformerb3.yml \
       --model_path /home/aistudio/best_model/seg/model.pdparams \
       --image_path /home/aistudio/data/src/img_testA \
       --save_dir /home/aistudio/data/infer_seg
   

预测结果/训练5分钟

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

【悉读经典】SegFormer:语义分割中的层次化Transformer网络 - php中文网        

相关专题

更多
Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

6

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

28

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

37

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

6

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

63

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

34

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

74

2026.01.13

MySQL数据库报错常见问题及解决方法大全
MySQL数据库报错常见问题及解决方法大全

本专题整合了MySQL数据库报错常见问题及解决方法,阅读专题下面的文章了解更多详细内容。

20

2026.01.13

PHP 文件上传
PHP 文件上传

本专题整合了PHP实现文件上传相关教程,阅读专题下面的文章了解更多详细内容。

31

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号