VoxelNet:基于点云的三维空间信息逐层次学习网络

P粉084495128
发布: 2025-07-28 10:33:02
原创
784人浏览过
本文是对苹果公司2017年VoxelNet论文的复现项目介绍。该网络基于点云实现3D物体检测,通过VFE层提取体素特征,经3D卷积和RPN网络完成检测。项目可训练评估,但单卡训练未达论文精度,存在内存泄漏问题。还介绍了数据集准备、库安装、训练评估步骤及部分结果指标。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

voxelnet:基于点云的三维空间信息逐层次学习网络 - php中文网

VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

VoxelNet:基于点云的三维空间信息逐层次学习网络

1、项目总览

①、简介

本项目主要是对来自2017年苹果公司基于点云的3D物体检测论文"VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection"进行复现。 VoxelNet只利用点云数据,在无人驾驶环境下实现了高精度的三维物体检测。

Note:项目目前可以训练、可以评估预测。但是(单卡训练,bs=2,epoch=100)未达到论文精度(论文bs=16,epoch=160)。有兴趣的同学可以自己尝试

另外重要的是:训练存在内存泄漏问题,之前定位到dataloader泄漏,不知道是数据预处理部分有问题还是paddle的问题,但是自己没闲功夫修改了,具体位置有兴趣的同学自己排查吧。 不然就得训练一段时间断掉再resume,其中train_fix_oom.py就是采用了读取内存,超过阈值resume的方案~

想要复现指标,一个是要调整参数(主要是yaml文件里的参数,但是参数改动可能造成出错),一个是要把项目里的bug fix掉噢!我认为调大batchsize应该会有大的提升!但是我并未尝试过多卡训练,所以可能会出问题。

ps:本项目主要是从second修改而来,所以稍加修改即可复现second和pointpillar。

之前训练(未训练完)的某次结果指标:

今天学点啥
今天学点啥

秘塔AI推出的AI学习助手

今天学点啥 258
查看详情 今天学点啥
Car AP@0.70, 0.70, 0.70:bbox AP:53.40, 41.52, 35.37bev  AP:52.85, 40.87, 34.853d   AP:50.86, 36.90, 30.71aos  AP:28.13, 23.91, 21.17Car AP@0.70, 0.50, 0.50:bbox AP:53.40, 41.52, 35.37bev  AP:53.44, 42.09, 35.773d   AP:53.42, 41.90, 35.65aos  AP:28.13, 23.91, 21.17
登录后复制
   

2、网络简介

将三维点云划分为一定数量的Voxel,经过点的随机采样以及归一化后,对每一个非空Voxel使用若干个VFE(Voxel Feature Encoding)层进行局部特征提取,得到Voxel-wise Feature,然后经过3D Convolutional Middle Layers进一步抽象特征(增大感受野并学习几何空间表示),最后使用RPN(Region Proposal Network)对物体进行分类检测与位置回归。VoxelNet整个pipeline如下图所示。

①、网络结构

VoxelNet:基于点云的三维空间信息逐层次学习网络 - php中文网        

通过层叠的VFE层将体素编码,然后3D卷积进一步放大局部voxel特征,将点云转化成高维的体积的表达。最后通过RPN产生检测结果。

②、特征提取模块:VFE

VoxelNet:基于点云的三维空间信息逐层次学习网络 - php中文网        

3、RPN模块

VoxelNet:基于点云的三维空间信息逐层次学习网络 - php中文网        

论文中提到,RPN 中的 FCN网络分为 3 块,每一块都会实现 2x 效果的下采样率。然后,又实现了向上采样,将倒数 3 块上采样到固定的尺寸,然后拼接起来。最终,由上采样拼接后的卷积引出 2 个目标分支:概率图和回归图 注意它们的尺寸,概率图通道数是 2,代表正负 anchor 的概率,这个概率应该通过 softmax 处理过。 回归图的通道数是 7,代表的就是一个 anchor 的 3D 信息(x,y,z,l,w,h,theta)

②、损失函数

VoxelNet:基于点云的三维空间信息逐层次学习网络 - php中文网        

总体 Loss 由 2 部分组成:

  • 分类 Loss
  • 回归 Loss

3、网络训练

1、数据集的准备(十几分钟解压)

VoxelNet:基于点云的三维空间信息逐层次学习网络 - php中文网

    VoxelNet网络在KITTI数据集中的3D Detection数据集上面进行训练,数据集中包含7481张训练图片以及7518张测试图片,一共有80256个标记物体,并且测试模式包含普通的视角以及鸟瞰视角。

In [ ]
!rm -rf kitti/
!mkdir -p kitti/training/velodyne_reduced
!mkdir -p kitti/testing/velodyne_reduced
登录后复制
   
In [ ]
!unzip data/data50186/data_object_calib.zip -d kitti/
登录后复制
   
In [ ]
!unzip data/data50186/image_training.zip -d kitti/training/
!unzip data/data50186/data_object_label_2.zip -d kitti/training/
!unzip data/data50186/velodyne_training_1.zip -d kitti/training/
!unzip data/data50186/velodyne_training_2.zip -d kitti//training/
!unzip data/data50186/velodyne_training_3.zip -d kitti/training/
登录后复制
   
In [ ]
!unzip data/data50186/image_testing.zip -d kitti/testing/
!unzip data/data50186/velodyne_testing_1.zip -d kitti/testing/
!unzip data/data50186/velodyne_testing_2.zip -d kitti/testing/
!unzip data/data50186/velodyne_testing_3.zip -d kitti/testing/
登录后复制
   
In [ ]
!mv kitti/training/training/* kitti/training/
!rm -rf kitti/training/training/
!mv kitti/testing/testing/* kitti/testing/
!rm -rf kitti/testing/testing/
登录后复制
   
In [ ]
!mkdir kitti/training/velodyne
!mv kitti/training/velodyne_training_1/* kitti/training/velodyne/
!mv kitti/training/velodyne_training_2/* kitti/training/velodyne/
!mv kitti/training/velodyne_training_3/* kitti/training/velodyne/
!rm -rf kitti/training/velodyne_training_1
!rm -rf kitti/training/velodyne_training_2
!rm -rf kitti/training/velodyne_training_3
!mkdir kitti/testing/velodyne
!mv kitti/testing/velodyne_testing_1/* kitti/testing/velodyne
!mv kitti/testing/velodyne_testing_2/* kitti/testing/velodyne
!mv kitti/testing/velodyne_testing_3/* kitti/testing/velodyne
!rm -rf kitti/testing/velodyne_testing_1
!rm -rf kitti/testing/velodyne_testing_2
!rm -rf kitti/testing/velodyne_testing_3
登录后复制
   

2、安装必要的库

In [ ]
!pip install shapely pybind11 protobuf scikit-image pillow fire scikit-image memory_profiler psutil
!pip install numpy==1.17!pip install numba==0.48.0
登录后复制
   

3、数据集处理与准备

    对KITTI数据集进行处理。

       

数据集应有结构

kitti/
├── training/
├──    	├── calib
├──    	├── image_2
├──    	├── label_2
├──    	├── velodyne
├──    	└── velodyne_reduced
├── testing/
├──    	├── calib
├──    	├── image_2
├──    	├── velodyne
├──    	└── velodyne_reduced
├── gt_database/
		├── 4264_Car_1.bin
    	...
├── kitti_dbinfos_train.pkl├── kitti_infos_test.pkl├── kitti_infos_train.pkl├── kitti_infos_trainval.pkl├── kitti_infos_val.pkl├── test.txt├── train.txt├── trainval.txt└── val.txt
登录后复制
   
In [ ]
!tree -L 1 kitti/
登录后复制
   
In [ ]
%cp -r kittiinfo/* kitti/
登录后复制
   
In [ ]
%cd Voxelnet
登录后复制
   
In [ ]
!python create_data.py create_kitti_info_file --data_path=/home/aistudio/kitti ## 报错的话,可能需要修改create_data.py内的路径
登录后复制
   
In [ ]
!python create_data.py create_reduced_point_cloud --data_path=/home/aistudio/kitti
登录后复制
   
In [ ]
!python create_data.py create_groundtruth_database --data_path=/home/aistudio/kitti
登录后复制
   

4、训练

In [15]
# !python train.py train --cfg_file=configs/voxelnet_kitti_car.yaml --model_dir=./output#或者!python train_mgpu.py --config=configs/voxelnet_kitti_car.yaml --model_dir=./output --use_vdl=True
登录后复制
   

5、评估

In [ ]
!python eval.py eval --cfg_file=configs/voxelnet_kitti_car.yaml --model_dir=./output
登录后复制
   

以上就是VoxelNet:基于点云的三维空间信息逐层次学习网络的详细内容,更多请关注php中文网其它相关文章!

相关标签:
最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号