飞桨常规赛:中文场景文字识别- 12月第8名方案

P粉084495128
发布: 2025-07-29 10:43:45
原创
742人浏览过
该内容围绕中文场景文字识别常规赛展开,介绍了比赛任务是用飞桨框架预测图像文字行内容。涵盖数据集情况,利用PaddleOCR的配置、训练、评估、预测等流程,包括模型选择、参数设置、预训练模型使用,以及结果提交相关的模型导出等内容。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

一、常规赛:中文场景文字识别

比赛地址:https://aistudio.baidu.com/aistudio/competition/detail/20/0/datasets

1.比赛简介

中文场景文字识别技术在人们的日常生活中受到广泛关注,具有丰富的应用场景,如:拍照翻译、图像检索、场景理解等。然而,中文场景中的文字面临着包括光照变化、低分辨率、字体以及排布多样性、中文字符种类多等复杂情况。如何解决上述问题成为一项极具挑战性的任务。

中文场景文字识别常规赛全新升级,提供轻量级中文场景文字识别数据,要求选手使用飞桨框架,对图像区域中的文字行进行预测,并返回文字行的内容。

2.数据集描述

本次赛题数据集共包括6万张图片,其中5万张图片作为训练集,1万张作为测试集。数据集采自中国街景,并由街景图片中的文字行区域(例如店铺标牌、地标等等)截取出来而形成。

具体数据介绍

数据集中所有图像都经过一些预处理,如下图所示:

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

(a) 标注:久斯台球会所

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

(b) 标注:上海创科泵业制造有限公司

标注文件

平台提供的标注文件为.csv文件格式,文件中的四列分别为图片的宽、高、文件名和文字标注。样例如下:

name value
0.jpg 文本0
-------- --------
1.jpg 文本0

二、环境设置

PaddleOCR https://github.com/paddlepaddle/PaddleOCR 是一款全宇宙最强的用的OCR工具库,开箱即用,速度杠杠的。

In [ ]
# 从gitee上下载PaddleOCR代码,也可以从GitHub链接下载!git clone https://gitee.com/paddlepaddle/PaddleOCR.git --depth=1# 升级pip!pip install -U pip 
# 安装依赖%cd ~/PaddleOCR
%pip install -r requirements.txt
登录后复制
In [ ]
%cd ~/PaddleOCR/
!tree   -L 1
登录后复制
/home/aistudio/PaddleOCR
.
├── benchmark
├── configs
├── deploy
├── doc
├── __init__.py
├── LICENSE
├── MANIFEST.in
├── paddleocr.py
├── ppocr
├── PPOCRLabel
├── ppstructure
├── README_ch.md
├── README.md
├── requirements.txt
├── setup.py
├── StyleText
├── test_tipc
├── tools
└── train.sh

10 directories, 9 files
登录后复制

三、数据准备

据悉train数据集共10万张,解压,并划分出10000张作为测试集。

1.数据下载解压

In [ ]
#  解压缩数据集%cd ~
!unzip -qa data/data62842/train_images.zip -d data/data62842/
!unzip -qa data/data62843/test_images.zip -d data/data62843/
登录后复制
/home/aistudio
登录后复制
In [ ]
# 使用命令查看训练数据文件夹下数据量是否是5万张!cd ~/data/data62842/train_images  &&  ls -l | grep "^-" | wc -l
登录后复制
50000
登录后复制
In [ ]
# 使用命令查看test数据文件夹下数据量是否是1万张!cd ~/data/data62843/test_images  &&  ls -l | grep "^-" | wc -l
登录后复制
10000
登录后复制

2. 数据集划分

In [ ]
# 读取数据列表文件import pandas as pd
%cd ~
data_label=pd.read_csv('data/data62842/train_label.csv', encoding='gb2312')
data_label.head()
登录后复制
/home/aistudio
登录后复制
    name    value
0  0.jpg       拉拉
1  1.jpg       6号
2  2.jpg       胖胖
3  3.jpg  前门大栅栏总店
4  4.jpg   你来就是旺季
登录后复制
In [ ]
# 对数据列表文件进行划分%cd ~/data/data62842/print(data_label.shape)
train=data_label[:45000]
val=data_label[45000:]
train.to_csv('train.txt',sep='\t',header=None,index=None)
val.to_csv('val.txt',sep='\t',header=None,index=None)
登录后复制
/home/aistudio/data/data62842
(50000, 2)
登录后复制
In [ ]
# 查看数量print(train.shape)print(val.shape)
登录后复制
(45000, 2)
(5000, 2)
登录后复制
In [ ]
!head val.txt
登录后复制
45000.jpg	责任单位:北京市环清环卫设施维修
45001.jpg	眼镜
45002.jpg	光临
45003.jpg	主治
45004.jpg	菜饭骨头汤
45005.jpg	理
45006.jpg	要多者提前预定
45007.jpg	干洗湿洗
45008.jpg	画布咖啡
45009.jpg	电焊、气割、专业自卸车
登录后复制
In [ ]
!head train.txt
登录后复制
0.jpg	拉拉
1.jpg	6号
2.jpg	胖胖
3.jpg	前门大栅栏总店
4.jpg	你来就是旺季
5.jpg	毛衣厂家直销
6.jpg	13761916218
7.jpg	福鼎白茶
8.jpg	妍心美容
9.jpg	童车童床
登录后复制

四、配置训练参数

以PaddleOCR/configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml为基准进行配置

1.配置模型网络

使用CRNN算法,backbone是MobileNetV3,损失函数是CTCLoss

Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [1, 2, 2, 2]  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    hidden_size: 48
  Head:
    name: CTCHead
    fc_decay: 0.00001
登录后复制

2.配置数据

对Train.data_dir, Train.label_file_list, Eval.data_dir, Eval.label_file_list进行配置

Train:  dataset:    name: SimpleDataSet    data_dir: /home/aistudio/data/data62842/train_images    label_file_list: ["/home/aistudio/data/data62842/train.txt"]
...
...Eval:  dataset:    name: SimpleDataSet    data_dir: /home/aistudio/data/data62842/train_images    label_file_list: ["/home/aistudio/data/data62842/val.txt"]
登录后复制

3. 显卡、评估设置

use_gpu、cal_metric_during_train分别是GPU、评估开关

Global:
  use_gpu: false             # true 使用GPU
  .....
  cal_metric_during_train: False   # true 打开评估
登录后复制

4. 多线程任务

Train.loader.num_workers:4Eval.loader.num_workers: 4
登录后复制

5.完整配置

Global:
  use_gpu: true
  epoch_num: 500
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec_chinese_lite_v2.0
  save_epoch_step: 3
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [0, 2000]  cal_metric_during_train: True
  pretrained_model: ./ch_ppocr_mobile_v2.0_rec_pre/best_accuracy
  checkpoints: 
  save_inference_dir:
  use_visualdl: True
  infer_img: doc/imgs_words/ch/word_1.jpg
  # for data or label process
  character_dict_path: ppocr/utils/ppocr_keys_v1.txt
  max_text_length: 25
  infer_mode: False
  use_space_char: True
  save_res_path: ./output/rec/predicts_chinese_lite_v2.0.txtOptimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Cosine
    learning_rate: 0.001
    warmup_epoch: 5
  regularizer:
    name: 'L2'
    factor: 0.00001Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [1, 2, 2, 2]  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    hidden_size: 48
  Head:
    name: CTCHead
    fc_decay: 0.00001Loss:
  name: CTCLossPostProcess:
  name: CTCLabelDecodeMetric:
  name: RecMetric
  main_indicator: accTrain:
  dataset:
    name: SimpleDataSet
    data_dir: /home/aistudio/data/data62842/train_images
    label_file_list: ["/home/aistudio/data/data62842/train.txt"]    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - RecAug: 
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 320]      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8Eval:
  dataset:
    name: SimpleDataSet
    data_dir: /home/aistudio/data/data62842/train_images
    label_file_list: ["/home/aistudio/data/data62842/val.txt"]    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 320]      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 8
登录后复制
In [1]
# 覆盖配置!cp -f  ~/rec_chinese_lite_train_v2.0.yml ~/PaddleOCR/configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml
登录后复制
cp: cannot stat '/home/aistudio/PaddleOCR/configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml': No such file or directory
登录后复制

6.使用预训练模型

据悉使用预训练模型,训练速度更快!!!

PaddleOCR提供的可下载模型包括推理模型、训练模型、预训练模型、slim模型,模型区别说明如下:

模型类型 模型格式 简介
推理模型 inference.pdmodel、inference.pdiparams 用于预测引擎推理,详情
训练模型、预训练模型 *.pdparams、*.pdopt、*.states 训练过程中保存的模型的参数、优化器状态和训练中间信息,多用于模型指标评估和恢复训练
slim模型 *.nb 经过飞桨模型压缩工具PaddleSlim压缩后的模型,适用于移动端/IoT端等端侧部署场景(需使用飞桨Paddle Lite部署)。

各个模型的关系如下面的示意图所示。

飞书妙记
飞书妙记

飞书智能会议纪要和快捷语音识别转文字

飞书妙记 45
查看详情 飞书妙记

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

文本检测模型

模型名称 模型简介 配置文件 推理模型大小 下载地址
ch_ppocr_mobile_slim_v2.0_det slim裁剪版超轻量模型,支持中英文、多语种文本检测 ch_det_mv3_db_v2.0.yml 2.6M 推理模型
ch_ppocr_mobile_v2.0_det 原始超轻量模型,支持中英文、多语种文本检测 ch_det_mv3_db_v2.0.yml 3M 推理模型 / 训练模型
ch_ppocr_server_v2.0_det 通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好 ch_det_res18_db_v2.0.yml 47M 推理模型 / 训练模型

文本识别模型

中文识别模型
模型名称 模型简介 配置文件 推理模型大小 下载地址
ch_ppocr_mobile_slim_v2.0_rec slim裁剪量化版超轻量模型,支持中英文、数字识别 rec_chinese_lite_train_v2.0.yml 6M 推理模型 / 训练模型
ch_ppocr_mobile_v2.0_rec 原始超轻量模型,支持中英文、数字识别 rec_chinese_lite_train_v2.0.yml 5.2M 推理模型 / 训练模型 / 预训练模型
ch_ppocr_server_v2.0_rec 通用模型,支持中英文、数字识别 rec_chinese_common_train_v2.0.yml 94.8M 推理模型 / 训练模型 / 预训练模型

说明: 训练模型是基于预训练模型在真实数据与竖排合成文本数据上finetune得到的模型,在真实应用场景中有着更好的表现,预训练模型则是直接基于全量真实数据与合成数据训练得到,更适合用于在自己的数据集上finetune。

英文识别模型
模型名称 模型简介 配置文件 推理模型大小 下载地址
en_number_mobile_slim_v2.0_rec slim裁剪量化版超轻量模型,支持英文、数字识别 rec_en_number_lite_train.yml 2.7M 推理模型 / 训练模型
en_number_mobile_v2.0_rec 原始超轻量模型,支持英文、数字识别 rec_en_number_lite_train.yml 2.6M 推理模型 / 训练模型

In [ ]
%cd ~/PaddleOCR/# mobile模型# !wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar# !tar -xf ch_ppocr_mobile_v2.0_rec_pre.tar# server模型!wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar
!tar -xf ch_ppocr_server_v2.0_rec_pre.tar
登录后复制
/home/aistudio/PaddleOCR
--2021-12-31 12:58:03--  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar
Resolving paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)... 182.61.200.195, 182.61.200.229, 2409:8c04:1001:1002:0:ff:b001:368a
Connecting to paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)|182.61.200.195|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 490184704 (467M) [application/x-tar]
Saving to: ‘ch_ppocr_server_v2.0_rec_pre.tar’

ch_ppocr_server_v2. 100%[===================>] 467.48M  56.0MB/s    in 13s     

2021-12-31 12:58:17 (34.9 MB/s) - ‘ch_ppocr_server_v2.0_rec_pre.tar’ saved [490184704/490184704]
登录后复制

五、训练

In [9]
%cd ~/PaddleOCR/# mobile模型# !python tools/train.py -c ./configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints=./output/rec_chinese_lite_v2.0/latest# server模型!python tools/train.py -c ./configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml
登录后复制

1.选择合适的batch size

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

2.训练日志

[2021/12/30 23:26:54] root INFO: epoch: [68/500], iter: 9930, lr: 0.000962, loss: 5.635038, acc: 0.521482, norm_edit_dis: 0.745346, reader_cost: 0.01405 s, batch_cost: 0.26990 s, samples: 2560, ips: 948.50786[2021/12/30 23:27:11] root INFO: epoch: [68/500], iter: 9940, lr: 0.000962, loss: 5.653114, acc: 0.509764, norm_edit_dis: 0.740487, reader_cost: 0.01402 s, batch_cost: 0.26862 s, samples: 2560, ips: 953.03473[2021/12/30 23:27:26] root INFO: epoch: [68/500], iter: 9950, lr: 0.000962, loss: 5.411234, acc: 0.515623, norm_edit_dis: 0.748549, reader_cost: 0.00091 s, batch_cost: 0.26371 s, samples: 2560, ips: 970.76457[2021/12/30 23:27:40] root INFO: epoch: [68/500], iter: 9960, lr: 0.000962, loss: 5.588465, acc: 0.525389, norm_edit_dis: 0.755345, reader_cost: 0.00684 s, batch_cost: 0.25901 s, samples: 2560, ips: 988.38445[2021/12/30 23:27:48] root INFO: epoch: [68/500], iter: 9970, lr: 0.000961, loss: 5.789876, acc: 0.513670, norm_edit_dis: 0.740609, reader_cost: 0.00095 s, batch_cost: 0.15022 s, samples: 2560, ips: 1704.17763[2021/12/30 23:27:51] root INFO: epoch: [68/500], iter: 9974, lr: 0.000961, loss: 5.787237, acc: 0.511717, norm_edit_dis: 0.747102, reader_cost: 0.00018 s, batch_cost: 0.05935 s, samples: 1024, ips: 1725.41448[2021/12/30 23:27:51] root INFO: save model in ./output/rec_chinese_lite_v2.0/latest[2021/12/30 23:27:51] root INFO: Initialize indexs of datasets:['/home/aistudio/data/data62842/train.txt'][2021/12/30 23:28:21] root INFO: epoch: [69/500], iter: 9980, lr: 0.000961, loss: 5.801509, acc: 0.517576, norm_edit_dis: 0.749756, reader_cost: 1.10431 s, batch_cost: 1.37585 s, samples: 1536, ips: 111.64048[2021/12/30 23:28:40] root INFO: epoch: [69/500], iter: 9990, lr: 0.000961, loss: 5.548770, acc: 0.533201, norm_edit_dis: 0.762078, reader_cost: 0.00839 s, batch_cost: 0.32035 s, samples: 2560, ips: 799.11578[2021/12/30 23:28:56] root INFO: epoch: [69/500], iter: 10000, lr: 0.000961, loss: 5.449094, acc: 0.537107, norm_edit_dis: 0.762517, reader_cost: 0.00507 s, batch_cost: 0.25845 s, samples: 2560, ips: 990.51517eval model:: 100%|██████████████████████████████| 20/20 [00:15<00:00,  1.98it/s]
[2021/12/30 23:29:12] root INFO: cur metric, acc: 0.4641999071600186, norm_edit_dis: 0.6980459628854201, fps: 4204.853978632389[2021/12/30 23:29:12] root INFO: best metric, acc: 0.48179990364001923, start_epoch: 12, norm_edit_dis: 0.7096561279006699, fps: 4618.199275059127, best_epoch: 46
登录后复制

3. visualdl可视化

  • 本地安装visualdl pip install visualdl
  • 下载日志至本地
  • 启动visualdl可视化  visualdl --logdir ./
  • 打开浏览器查看  http://localhost:8040/

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

六、模型评估

In [10]
# GPU 评估, Global.checkpoints 为待测权重%cd ~/PaddleOCR/# mobile模型# !python  -m paddle.distributed.launch tools/eval.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml \#     -o Global.checkpoints=./output/rec_chinese_lite_v2.0/latest# server模型!python  -m paddle.distributed.launch tools/eval.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml \
    -o Global.checkpoints=./output/rec_chinese_common_v2.0/best_accuracy.pdparams
登录后复制
/home/aistudio/PaddleOCR
-----------  Configuration Arguments -----------
backend: auto
elastic_server: None
force: False
gpus: None
heter_devices: 
heter_worker_num: None
heter_workers: 
host: None
http_port: None
ips: 127.0.0.1
job_id: None
log_dir: log
np: None
nproc_per_node: None
run_mode: None
scale: 0
server_num: None
servers: 
training_script: tools/eval.py
training_script_args: ['-c', 'configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml', '-o', 'Global.checkpoints=./output/rec_chinese_common_v2.0/best_accuracy.pdparams']
worker_num: None
workers: 
------------------------------------------------
WARNING 2021-12-31 18:51:19,722 launch.py:423] Not found distinct arguments and compiled with cuda or xpu. Default use collective mode
launch train in GPU mode!
INFO 2021-12-31 18:51:19,725 launch_utils.py:528] Local start 1 processes. First process distributed environment info (Only For Debug): 
    +=======================================================================================+
    |                        Distributed Envs                      Value                    |
    +---------------------------------------------------------------------------------------+
    |                       PADDLE_TRAINER_ID                        0                      |
    |                 PADDLE_CURRENT_ENDPOINT                 127.0.0.1:46063               |
    |                     PADDLE_TRAINERS_NUM                        1                      |
    |                PADDLE_TRAINER_ENDPOINTS                 127.0.0.1:46063               |
    |                     PADDLE_RANK_IN_NODE                        0                      |
    |                 PADDLE_LOCAL_DEVICE_IDS                        0                      |
    |                 PADDLE_WORLD_DEVICE_IDS                        0                      |
    |                     FLAGS_selected_gpus                        0                      |
    |             FLAGS_selected_accelerators                        0                      |
    +=======================================================================================+

INFO 2021-12-31 18:51:19,725 launch_utils.py:532] details abouts PADDLE_TRAINER_ENDPOINTS can be found in log/endpoints.log, and detail running logs maybe found in log/workerlog.0
launch proc_id:16263 idx:0
[2021/12/31 18:51:21] root INFO: Architecture : 
[2021/12/31 18:51:21] root INFO:     Backbone : 
[2021/12/31 18:51:21] root INFO:         layers : 34
[2021/12/31 18:51:21] root INFO:         name : ResNet
[2021/12/31 18:51:21] root INFO:     Head : 
[2021/12/31 18:51:21] root INFO:         fc_decay : 4e-05
[2021/12/31 18:51:21] root INFO:         name : CTCHead
[2021/12/31 18:51:21] root INFO:     Neck : 
[2021/12/31 18:51:21] root INFO:         encoder_type : rnn
[2021/12/31 18:51:21] root INFO:         hidden_size : 256
[2021/12/31 18:51:21] root INFO:         name : SequenceEncoder
[2021/12/31 18:51:21] root INFO:     Transform : None
[2021/12/31 18:51:21] root INFO:     algorithm : CRNN
[2021/12/31 18:51:21] root INFO:     model_type : rec
[2021/12/31 18:51:21] root INFO: Eval : 
[2021/12/31 18:51:21] root INFO:     dataset : 
[2021/12/31 18:51:21] root INFO:         data_dir : /home/aistudio/data/data62842/train_images
[2021/12/31 18:51:21] root INFO:         label_file_list : ['/home/aistudio/data/data62842/val.txt']
[2021/12/31 18:51:21] root INFO:         name : SimpleDataSet
[2021/12/31 18:51:21] root INFO:         transforms : 
[2021/12/31 18:51:21] root INFO:             DecodeImage : 
[2021/12/31 18:51:21] root INFO:                 channel_first : False
[2021/12/31 18:51:21] root INFO:                 img_mode : BGR
[2021/12/31 18:51:21] root INFO:             CTCLabelEncode : None
[2021/12/31 18:51:21] root INFO:             RecResizeImg : 
[2021/12/31 18:51:21] root INFO:                 image_shape : [3, 32, 320]
[2021/12/31 18:51:21] root INFO:             KeepKeys : 
[2021/12/31 18:51:21] root INFO:                 keep_keys : ['image', 'label', 'length']
[2021/12/31 18:51:21] root INFO:     loader : 
[2021/12/31 18:51:21] root INFO:         batch_size_per_card : 256
[2021/12/31 18:51:21] root INFO:         drop_last : False
[2021/12/31 18:51:21] root INFO:         num_workers : 8
[2021/12/31 18:51:21] root INFO:         shuffle : False
[2021/12/31 18:51:21] root INFO: Global : 
[2021/12/31 18:51:21] root INFO:     cal_metric_during_train : True
[2021/12/31 18:51:21] root INFO:     character_dict_path : ppocr/utils/ppocr_keys_v1.txt
[2021/12/31 18:51:21] root INFO:     checkpoints : ./output/rec_chinese_common_v2.0/best_accuracy.pdparams
[2021/12/31 18:51:21] root INFO:     debug : False
[2021/12/31 18:51:21] root INFO:     distributed : False
[2021/12/31 18:51:21] root INFO:     epoch_num : 500
[2021/12/31 18:51:21] root INFO:     eval_batch_step : [0, 2000]
[2021/12/31 18:51:21] root INFO:     infer_img : doc/imgs_words/ch/word_1.jpg
[2021/12/31 18:51:21] root INFO:     infer_mode : False
[2021/12/31 18:51:21] root INFO:     log_smooth_window : 20
[2021/12/31 18:51:21] root INFO:     max_text_length : 25
[2021/12/31 18:51:21] root INFO:     pretrained_model : ./ch_ppocr_server_v2.0_rec_pre/best_accuracy
[2021/12/31 18:51:21] root INFO:     print_batch_step : 10
[2021/12/31 18:51:21] root INFO:     save_epoch_step : 3
[2021/12/31 18:51:21] root INFO:     save_inference_dir : None
[2021/12/31 18:51:21] root INFO:     save_model_dir : ./output/rec_chinese_common_v2.0
[2021/12/31 18:51:21] root INFO:     save_res_path : ./output/rec/predicts_chinese_common_v2.0.txt
[2021/12/31 18:51:21] root INFO:     use_gpu : True
[2021/12/31 18:51:21] root INFO:     use_space_char : True
[2021/12/31 18:51:21] root INFO:     use_visualdl : False
[2021/12/31 18:51:21] root INFO: Loss : 
[2021/12/31 18:51:21] root INFO:     name : CTCLoss
[2021/12/31 18:51:21] root INFO: Metric : 
[2021/12/31 18:51:21] root INFO:     main_indicator : acc
[2021/12/31 18:51:21] root INFO:     name : RecMetric
[2021/12/31 18:51:21] root INFO: Optimizer : 
[2021/12/31 18:51:21] root INFO:     beta1 : 0.9
[2021/12/31 18:51:21] root INFO:     beta2 : 0.999
[2021/12/31 18:51:21] root INFO:     lr : 
[2021/12/31 18:51:21] root INFO:         learning_rate : 0.001
[2021/12/31 18:51:21] root INFO:         name : Cosine
[2021/12/31 18:51:21] root INFO:         warmup_epoch : 5
[2021/12/31 18:51:21] root INFO:     name : Adam
[2021/12/31 18:51:21] root INFO:     regularizer : 
[2021/12/31 18:51:21] root INFO:         factor : 4e-05
[2021/12/31 18:51:21] root INFO:         name : L2
[2021/12/31 18:51:21] root INFO: PostProcess : 
[2021/12/31 18:51:21] root INFO:     name : CTCLabelDecode
[2021/12/31 18:51:21] root INFO: Train : 
[2021/12/31 18:51:21] root INFO:     dataset : 
[2021/12/31 18:51:21] root INFO:         data_dir : /home/aistudio/data/data62842/train_images
[2021/12/31 18:51:21] root INFO:         label_file_list : ['/home/aistudio/data/data62842/train.txt']
[2021/12/31 18:51:21] root INFO:         name : SimpleDataSet
[2021/12/31 18:51:21] root INFO:         transforms : 
[2021/12/31 18:51:21] root INFO:             DecodeImage : 
[2021/12/31 18:51:21] root INFO:                 channel_first : False
[2021/12/31 18:51:21] root INFO:                 img_mode : BGR
[2021/12/31 18:51:21] root INFO:             RecAug : None
[2021/12/31 18:51:21] root INFO:             CTCLabelEncode : None
[2021/12/31 18:51:21] root INFO:             RecResizeImg : 
[2021/12/31 18:51:21] root INFO:                 image_shape : [3, 32, 320]
[2021/12/31 18:51:21] root INFO:             KeepKeys : 
[2021/12/31 18:51:21] root INFO:                 keep_keys : ['image', 'label', 'length']
[2021/12/31 18:51:21] root INFO:     loader : 
[2021/12/31 18:51:21] root INFO:         batch_size_per_card : 256
[2021/12/31 18:51:21] root INFO:         drop_last : True
[2021/12/31 18:51:21] root INFO:         num_workers : 8
[2021/12/31 18:51:21] root INFO:         shuffle : True
[2021/12/31 18:51:21] root INFO: profiler_options : None
[2021/12/31 18:51:21] root INFO: train with paddle 2.2.1 and device CUDAPlace(0)
[2021/12/31 18:51:21] root INFO: Initialize indexs of datasets:['/home/aistudio/data/data62842/val.txt']
W1231 18:51:21.482865 16263 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W1231 18:51:21.487445 16263 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2021/12/31 18:51:26] root INFO: resume from ./output/rec_chinese_common_v2.0/best_accuracy
[2021/12/31 18:51:26] root INFO: metric in ckpt ***************
[2021/12/31 18:51:26] root INFO: acc:0.6035998792800241
[2021/12/31 18:51:26] root INFO: norm_edit_dis:0.8053270782756357
[2021/12/31 18:51:26] root INFO: fps:438.9587163608945
[2021/12/31 18:51:26] root INFO: best_epoch:23
[2021/12/31 18:51:26] root INFO: start_epoch:24

eval model::   0%|          | 0/20 [00:00<?, ?it/s]
eval model::   5%|▌         | 1/20 [00:02<00:54,  2.88s/it]
eval model::  10%|█         | 2/20 [00:04<00:43,  2.42s/it]
eval model::  15%|█▌        | 3/20 [00:05<00:35,  2.10s/it]
eval model::  20%|██        | 4/20 [00:06<00:29,  1.87s/it]
eval model::  25%|██▌       | 5/20 [00:08<00:25,  1.71s/it]
eval model::  30%|███       | 6/20 [00:09<00:22,  1.60s/it]
eval model::  35%|███▌      | 7/20 [00:10<00:19,  1.53s/it]
eval model::  40%|████      | 8/20 [00:12<00:17,  1.48s/it]
eval model::  45%|████▌     | 9/20 [00:13<00:15,  1.44s/it]
eval model::  50%|█████     | 10/20 [00:15<00:14,  1.42s/it]
eval model::  55%|█████▌    | 11/20 [00:16<00:12,  1.40s/it]
eval model::  60%|██████    | 12/20 [00:17<00:11,  1.39s/it]
eval model::  65%|██████▌   | 13/20 [00:19<00:09,  1.38s/it]
eval model::  70%|███████   | 14/20 [00:20<00:08,  1.38s/it]
eval model::  75%|███████▌  | 15/20 [00:21<00:06,  1.38s/it]
eval model::  80%|████████  | 16/20 [00:23<00:05,  1.38s/it]
eval model::  85%|████████▌ | 17/20 [00:24<00:04,  1.38s/it]
eval model::  90%|█████████ | 18/20 [00:25<00:02,  1.37s/it]
eval model::  95%|█████████▌| 19/20 [00:27<00:01,  1.37s/it]
eval model:: 100%|██████████| 20/20 [00:28<00:00,  1.17s/it]
[2021/12/31 18:51:54] root INFO: metric eval ***************
[2021/12/31 18:51:54] root INFO: acc:0.6035998792800241
[2021/12/31 18:51:54] root INFO: norm_edit_dis:0.8053270782756357
[2021/12/31 18:51:54] root INFO: fps:439.3796693669832
INFO 2021-12-31 18:51:55,788 launch.py:311] Local processes completed.
登录后复制

七、结果预测

预测脚本使用预测训练好的模型,并将结果保存成txt格式,可以直接送到比赛提交入口测评,文件默认保存在output/rec/predicts_chinese_lite_v2.0.txt

1.提交内容与格式

本次比赛要求参赛选手必须提交使用深度学习平台飞桨(PaddlePaddle)训练的模型。参赛者要求以.txt 文本格式提交结果,其中每一行是图片名称和文字预测的结果,中间以 “\t” 作为分割符,示例如下:

new_name value
0.jpg 文本0

2. infer_rec.py修改

 with open(save_res_path, "w") as fout:
 	#添加列头
 	fout.write('new_name' + "\t" + 'value' +'\n')
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            if config['Architecture']['algorithm'] == "SRN":
                encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
                gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
                gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
                gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)

                others = [
                    paddle.to_tensor(encoder_word_pos_list),
                    paddle.to_tensor(gsrm_word_pos_list),
                    paddle.to_tensor(gsrm_slf_attn_bias1_list),
                    paddle.to_tensor(gsrm_slf_attn_bias2_list)
                ]
            if config['Architecture']['algorithm'] == "SAR":
                valid_ratio = np.expand_dims(batch[-1], axis=0)
                img_metas = [paddle.to_tensor(valid_ratio)]

            images = np.expand_dims(batch[0], axis=0)
            images = paddle.to_tensor(images)
            if config['Architecture']['algorithm'] == "SRN":
                preds = model(images, others)
            elif config['Architecture']['algorithm'] == "SAR":
                preds = model(images, img_metas)
            else:
                preds = model(images)
            post_result = post_process_class(preds)
            info = None
            if isinstance(post_result, dict):
                rec_info = dict()
                for key in post_result:
                    if len(post_result[key][0]) >= 2:
                        rec_info[key] = {                            "label": post_result[key][0][0],                            "score": float(post_result[key][0][1]),
                        }
                info = json.dumps(rec_info)
            else:
                if len(post_result[0]) >= 2:
                    info = post_result[0][0] + "\t" + str(post_result[0][1])

            if info is not None:
                logger.info("\t result: {}".format(info))
                # fout.write(file + "\t" + info)
                # 格式化输出
                fout.write(file + "\t" + post_result[0][0] +'\n')
    logger.info("success!")
登录后复制
In [11]
%cd ~/PaddleOCR/# mobile模型# !python tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml \#     -o Global.infer_img="/home/aistudio/data/data62843/test_images" \#     Global.pretrained_model="./output/rec_chinese_lite_v2.0/best_accuracy"# server模型!python tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml \
    -o Global.infer_img="/home/aistudio/data/data62843/test_images" \
    Global.checkpoints=./output/rec_chinese_common_v2.0/best_accuracy
登录后复制

预测日志

[2021/12/30 23:53:50] root INFO: 	 result: 萧记果点	0.66611135[2021/12/30 23:53:50] root INFO: infer_img: /home/aistudio/data/data62843/test_images/9995.jpg
[2021/12/30 23:53:50] root INFO: 	 result: 福	0.1693737[2021/12/30 23:53:50] root INFO: infer_img: /home/aistudio/data/data62843/test_images/9996.jpg
[2021/12/30 23:53:50] root INFO: 	 result: 279	0.97771764[2021/12/30 23:53:50] root INFO: infer_img: /home/aistudio/data/data62843/test_images/9997.jpg
[2021/12/30 23:53:50] root INFO: 	 result: 公牛装饰开关	0.9916236[2021/12/30 23:53:50] root INFO: infer_img: /home/aistudio/data/data62843/test_images/9998.jpg
[2021/12/30 23:53:50] root INFO: 	 result: 专酒	0.118371546[2021/12/30 23:53:50] root INFO: infer_img: /home/aistudio/data/data62843/test_images/9999.jpg
[2021/12/30 23:53:50] root INFO: 	 result: 东之家	0.871051[2021/12/30 23:53:50] root INFO: success!
...
...
登录后复制

八、基于预测引擎的预测

1.模型大小限制

约束性条件1:模型总大小不超过10MB(以.pdmodel和.pdiparams文件非压缩状态磁盘占用空间之和为准);

2.解决办法

训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。实际上,此处的约束条件限制的是inference 模型的大小。inference 模型一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成,模型大小也会小一些。

In [ ]
# 静态模型导出%cd ~/PaddleOCR/# mobile模型# !python tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./output/rec_chinese_lite_v2.0/best_accuracy.pdparams  Global.save_inference_dir=./inference/rec_inference/# server模型!python tools/export_model.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_common_v2.0.yml -o Global.pretrained_model=./output/rec_chinese_common_train_v2.0/best_accuracy.pdparams  Global.save_inference_dir=./inference/rec_inference/
登录后复制
/home/aistudio/PaddleOCR
W1230 23:54:48.747483 13346 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 11.0, Runtime API Version: 10.1
W1230 23:54:48.752360 13346 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2021/12/30 23:54:52] root INFO: load pretrain successful from ./output/rec_chinese_lite_v2.0/best_accuracy
[2021/12/30 23:54:54] root INFO: inference model is saved to ./inference/rec_inference/inference
登录后复制
In [ ]
%cd ~/PaddleOCR/
!du -sh ./inference/rec_inference/
登录后复制
/home/aistudio/PaddleOCR
5.2M	./inference/rec_inference/
登录后复制
  • 可以看到,当前训练使用的CRNN算法导出inference后,仅有5.2M。
  • 导出的inference模型也可以用来预测,预测逻辑如下代码所示。
In [ ]
# 使用导出静态模型预测%cd ~/PaddleOCR/
!python3.7 tools/infer/predict_rec.py  --rec_model_dir=./inference/rec_inference/  --image_dir="/home/aistudio/data/A榜测试数据集/TestAImages"
登录后复制

预测日志

[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000001.jpg:('MJ', 0.2357887)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000002.jpg:('中门', 0.7167614)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000003.jpg:('黄焖鸡米饭', 0.7325407)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000004.jpg:('加行', 0.06699998)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000005.jpg:('学商烤面航', 0.40579563)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000006.jpg:('绿村装机 滋光彩机 CP口出国', 0.38243735)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000007.jpg:('有酸锁 四好吃', 0.38957664)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000008.jpg:('婚汽中海', 0.36037388)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000009.jpg:('L', 0.25453746)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000010.jpg:('清女装', 0.79736567)
[2021/12/30 13:20:08] root INFO: Predicts of /home/aistudio/data/A榜测试数据集/TestAImages/TestA_000011.jpg:('幼小数学视食', 0.50577885)
...
...
登录后复制

九、提交

预测结果保存到配置文件指定的 output/rec/predicts_chinese_lite_v2.0.txt文件,可直接提交即可。

In [12]
%cd ~
!head PaddleOCR/output/rec/predicts_chinese_common_v2.0.txt
登录后复制
/home/aistudio
new_name	value
0.jpg	邦佳洗衣
1.jpg	不锈钢配件大全
10.jpg	诊疗科目:中医科
100.jpg	210
1000.jpg	电线电缆等
1001.jpg	20
1002.jpg	进口滤纸 专业制造
1003.jpg	1506540
1004.jpg	iWoW
登录后复制

1.mobile模型

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

2.server模型

飞桨常规赛:中文场景文字识别- 12月第8名方案 - php中文网

大家可以再处理处理,优化优化,多跑几轮。

以上就是飞桨常规赛:中文场景文字识别- 12月第8名方案的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号