该内容为天池街景字符编码识别比赛的实现过程。介绍了赛题数据来自SVHN数据集,含训练集3W张、验证集1W张等。使用PaddleOCR,经数据准备、参数配置,以CRNN算法、MobileNetV3骨干网等训练,还涉及评估、预测及模型导出,最终可生成提交结果,基础跑分为82分。
☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

比赛地址:https://tianchi.aliyun.com/competition/entrance/531795/information
赛题来源自Google街景图像中的门牌号数据集(The Street View House Numbers Dataset, SVHN),并根据一定方式采样得到比赛数据集。
该数据来自真实场景的门牌号。训练集数据包括3W张照片,验证集数据包括1W张照片,每张照片包括颜色图像和对应的编码类别和具体位置;为了保证比赛的公平性,测试集A包括4W张照片,测试集B包括4W张照片。
enter image description here

所有的数据(训练集、验证集和测试集)的标注使用JSON格式,并使用文件名进行索引。如果一个文件中包括多个字符,则使用列表将字段进行组合。
| Field | Description | 
|---|---|
| top | 左上角坐标Y | 
| height | 字符高度 | 
| left | 左上角坐标X | 
| width | 字符宽度 | 
| label | 字符编码 | 
注:数据集来源自SVHN,网页链接http://ufldl.stanford.edu/housenumbers/,并进行匿名处理和噪音处理,请各位选手使用比赛给定的数据集完成训练。
# 从gitee上下载PaddleOCR代码,也可以从GitHub链接下载!git clone https://gitee.com/paddlepaddle/PaddleOCR.git --depth=1# 升级pip!pip install -U pip # 安装依赖%cd ~/PaddleOCR %pip install -r requirements.txt
%cd ~/PaddleOCR/ !tree -L 1
/home/aistudio/PaddleOCR . ├── benchmark ├── configs ├── deploy ├── doc ├── __init__.py ├── LICENSE ├── MANIFEST.in ├── paddleocr.py ├── ppocr ├── PPOCRLabel ├── ppstructure ├── README_ch.md ├── README.md ├── requirements.txt ├── setup.py ├── StyleText ├── test_tipc ├── tools └── train.sh 10 directories, 9 files
据悉train数据集共10万张,解压,并划分出10000张作为测试集。
# 解压缩数据集%cd ~ !unzip -qoa data/data124095/street_code_rec_data.zip -d ~/data/
/home/aistudio
# 重命名文件夹!mv data/街景编码识别 data/street_code_rec_data
# 解压test数据集!unzip -qoa data/street_code_rec_data/mchar_test_a.zip -d data/street_code_rec_data/
# 解压eval据集!unzip -qoa data/street_code_rec_data/mchar_val.zip -d data/street_code_rec_data/
# 解压train数据集!unzip -qoa data/street_code_rec_data/mchar_train.zip -d data/street_code_rec_data/
# 使用命令查看训练数据文件夹下数据量是否是3张!cd data/street_code_rec_data/mchar_train && ls -l | grep "^-" | wc -l
30000
# 使用命令查看test数据文件夹下数据量是否是4万张!cd data/street_code_rec_data/mchar_test_a && ls -l | grep "^-" | wc -l
40000
# 使用命令查看test数据文件夹下数据量是否是1万张!cd data/street_code_rec_data/mchar_val && ls -l | grep "^-" | wc -l
10000
%cd data/street_code_rec_data !rm *.zip%cd ~
/home/aistudio/data/street_code_rec_data /home/aistudio
import jsondef trans(path):
    with open(path + '.json', 'r') as f:
        json_data = json.load(f)        print(len(json_data))        with open(path + '.csv', 'w') as ff:            for item in json_data:
                label = json_data[item]['label']
                label = [str(x) for x in label]
                label = ''.join(label)
                ff.write(item + '\t' + label + '\n')trans('data/street_code_rec_data/mchar_val')
trans('data/street_code_rec_data/mchar_train')10000 30000
!head data/street_code_rec_data/mchar_val.csv
000000.png 5 000001.png 210 000002.png 6 000003.png 1 000004.png 9 000005.png 1 000006.png 183 000007.png 65 000008.png 144 000009.png 16
!head data/street_code_rec_data/mchar_train.csv
000000.png 19 000001.png 23 000002.png 25 000003.png 93 000004.png 31 000005.png 33 000006.png 28 000007.png 744 000008.png 128 000009.png 16
from PIL import Image
img=Image.open('data/street_code_rec_data/mchar_train/000000.png')print(img.size)
img(741, 350)
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=741x350 at 0x7F134A1CAB10>
以PaddleOCR/configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml为基准进行配置
使用CRNN算法,backbone是MobileNetV3,损失函数是CTCLoss
Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [1, 2, 2, 2]  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    hidden_size: 48
  Head:
    name: CTCHead
    fc_decay: 0.00001对Train.data_dir, Train.label_file_list, Eval.data_dir, Eval.label_file_list进行配置
Train: dataset: name: SimpleDataSet data_dir: /home/aistudio/data/street_code_rec_data/mchar_train label_file_list: ["/home/aistudio/data/street_code_rec_data/mchar_train.csv"] ... ...Eval: dataset: name: SimpleDataSet data_dir: /home/aistudio/data/street_code_rec_data/mchar_val label_file_list: ["/home/aistudio/data/street_code_rec_data/mchar_val.csv"]
use_gpu、cal_metric_during_train分别是GPU、评估开关
Global: use_gpu: false # true 使用GPU ..... cal_metric_during_train: False # true 打开评估
Train.loader.num_workers:4Eval.loader.num_workers: 4
Global:
  use_gpu: True
  epoch_num: 500
  log_smooth_window: 20
  print_batch_step: 10
  save_model_dir: ./output/rec_en_number_lite
  save_epoch_step: 3
  # evaluation is run every 5000 iterations after the 4000th iteration
  eval_batch_step: [1000, 100]  # if pretrained_model is saved in static mode, load_static_weights must set to True
  cal_metric_during_train: True
  pretrained_model: ./en_number_mobile_v2.0_rec_train/best_accuracy.pdparams
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img:
  # for data or label process
  character_dict_path: ppocr/utils/en_dict.txt
  max_text_length: 25
  infer_mode: False
  use_space_char: TrueOptimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    name: Cosine
    learning_rate: 0.001
  regularizer:
    name: 'L2'
    factor: 0.00001Architecture:
  model_type: rec
  algorithm: CRNN
  Transform:
  Backbone:
    name: MobileNetV3
    scale: 0.5
    model_name: small
    small_stride: [1, 2, 2, 2]  Neck:
    name: SequenceEncoder
    encoder_type: rnn
    hidden_size: 48
  Head:
    name: CTCHead
    fc_decay: 0.00001Loss:
  name: CTCLossPostProcess:
  name: CTCLabelDecodeMetric:
  name: RecMetric
  main_indicator: accTrain:
  dataset:
    name: SimpleDataSet
    data_dir: /home/aistudio/data/street_code_rec_data/mchar_train
    label_file_list: ["/home/aistudio/data/street_code_rec_data/mchar_train.csv"]    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - RecAug: 
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 320]      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 256
    drop_last: True
    num_workers: 8Eval:
  dataset:
    name: SimpleDataSet
    data_dir: /home/aistudio/data/street_code_rec_data/mchar_val
    label_file_list: ["/home/aistudio/data/street_code_rec_data/mchar_val.csv"]    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - CTCLabelEncode: # Class handling label
      - RecResizeImg:
          image_shape: [3, 32, 320]      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 8# 已配置好的文件,直接覆盖替换(-f)!cp -f ~/rec_en_number_lite_train.yml ~/PaddleOCR/configs/rec/multi_language/rec_en_number_lite_train.yml
据悉使用预训练模型,训练速度更快!!!
PaddleOCR提供的可下载模型包括推理模型、训练模型、预训练模型、slim模型,模型区别说明如下:
| 模型类型 | 模型格式 | 简介 | 
|---|---|---|
| 推理模型 | inference.pdmodel、inference.pdiparams | 用于预测引擎推理,详情 | 
| 训练模型、预训练模型 | *.pdparams、*.pdopt、*.states | 训练过程中保存的模型的参数、优化器状态和训练中间信息,多用于模型指标评估和恢复训练 | 
| slim模型 | *.nb | 经过飞桨模型压缩工具PaddleSlim压缩后的模型,适用于移动端/IoT端等端侧部署场景(需使用飞桨Paddle Lite部署)。 | 
各个模型的关系如下面的示意图所示。

| 模型名称 | 模型简介 | 配置文件 | 推理模型大小 | 下载地址 | 
|---|---|---|---|---|
| en_number_mobile_slim_v2.0_rec | slim裁剪量化版超轻量模型,支持英文、数字识别 | rec_en_number_lite_train.yml | 2.7M | 推理模型 / 训练模型 | 
| en_number_mobile_v2.0_rec | 原始超轻量模型,支持英文、数字识别 | rec_en_number_lite_train.yml | 2.6M | 推理模型 / 训练模型 | 
%cd ~/PaddleOCR/# mobile模型!wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar !tar -xf en_number_mobile_v2.0_rec_train.tar
/home/aistudio/PaddleOCR --2022-01-02 00:10:41-- https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar Resolving paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)... 182.61.200.229, 182.61.200.195, 2409:8c04:1001:1002:0:ff:b001:368a Connecting to paddleocr.bj.bcebos.com (paddleocr.bj.bcebos.com)|182.61.200.229|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 9123840 (8.7M) [application/x-tar] Saving to: ‘en_number_mobile_v2.0_rec_train.tar’ en_number_mobile_v2 100%[===================>] 8.70M 8.63MB/s in 1.0s 2022-01-02 00:10:42 (8.63 MB/s) - ‘en_number_mobile_v2.0_rec_train.tar’ saved [9123840/9123840]
%cd ~/PaddleOCR/# mobile模型!python tools/train.py -c ./configs/rec/multi_language/rec_en_number_lite_train.yml -o Global.checkpoints=./output/rec_en_number_lite/latest

2022/01/02 01:28:23] root INFO: save model in ./output/rec_en_number_lite/latest[2022/01/02 01:28:23] root INFO: Initialize indexs of datasets:['/home/aistudio/data/street_code_rec_data/mchar_train.csv'][2022/01/02 01:28:54] root INFO: epoch: [27/500], iter: 180, lr: 0.000986, loss: 1.043328, acc: 0.765624, norm_edit_dis: 0.863509, reader_cost: 2.26051 s, batch_cost: 2.59590 s, samples: 7168, ips: 276.12724[2022/01/02 01:29:18] root INFO: epoch: [27/500], iter: 190, lr: 0.000986, loss: 1.056450, acc: 0.765624, norm_edit_dis: 0.864510, reader_cost: 1.18228 s, batch_cost: 1.65932 s, samples: 10240, ips: 617.12064[2022/01/02 01:29:34] root INFO: epoch: [27/500], iter: 200, lr: 0.000985, loss: 1.069025, acc: 0.759277, norm_edit_dis: 0.860254, reader_cost: 0.74316 s, batch_cost: 1.15521 s, samples: 10240, ips: 886.42030eval model:: 100%|██████████████████████████████| 10/10 [00:07<00:00, 2.12it/s] [2022/01/02 01:29:42] root INFO: cur metric, acc: 0.6261999373800062, norm_edit_dis: 0.7362716930394972, fps: 4054.7339744968563[2022/01/02 01:29:42] root INFO: save best model is to ./output/rec_en_number_lite/best_accuracy[2022/01/02 01:29:42] root INFO: best metric, acc: 0.6261999373800062, start_epoch: 21, norm_edit_dis: 0.7362716930394972, fps: 4054.7339744968563, best_epoch: 27

# GPU 评估, Global.checkpoints 为待测权重%cd ~/PaddleOCR/# mobile模型!python  -m paddle.distributed.launch tools/eval.py -c ./configs/rec/multi_language/rec_en_number_lite_train.yml \
    -o Global.checkpoints=./output/rec_en_number_lite/best_accuracy.pdparams/home/aistudio/PaddleOCR
-----------  Configuration Arguments -----------
backend: auto
elastic_server: None
force: False
gpus: None
heter_devices: 
heter_worker_num: None
heter_workers: 
host: None
http_port: None
ips: 127.0.0.1
job_id: None
log_dir: log
np: None
nproc_per_node: None
run_mode: None
scale: 0
server_num: None
servers: 
training_script: tools/eval.py
training_script_args: ['-c', './configs/rec/multi_language/rec_en_number_lite_train.yml', '-o', 'Global.checkpoints=./output/rec_en_number_lite/best_accuracy.pdparams']
worker_num: None
workers: 
------------------------------------------------
WARNING 2022-01-02 01:32:26,892 launch.py:423] Not found distinct arguments and compiled with cuda or xpu. Default use collective mode
launch train in GPU mode!
INFO 2022-01-02 01:32:26,894 launch_utils.py:528] Local start 1 processes. First process distributed environment info (Only For Debug): 
    +=======================================================================================+
    |                        Distributed Envs                      Value                    |
    +---------------------------------------------------------------------------------------+
    |                       PADDLE_TRAINER_ID                        0                      |
    |                 PADDLE_CURRENT_ENDPOINT                 127.0.0.1:33420               |
    |                     PADDLE_TRAINERS_NUM                        1                      |
    |                PADDLE_TRAINER_ENDPOINTS                 127.0.0.1:33420               |
    |                     PADDLE_RANK_IN_NODE                        0                      |
    |                 PADDLE_LOCAL_DEVICE_IDS                        0                      |
    |                 PADDLE_WORLD_DEVICE_IDS                        0                      |
    |                     FLAGS_selected_gpus                        0                      |
    |             FLAGS_selected_accelerators                        0                      |
    +=======================================================================================+
INFO 2022-01-02 01:32:26,894 launch_utils.py:532] details abouts PADDLE_TRAINER_ENDPOINTS can be found in log/endpoints.log, and detail running logs maybe found in log/workerlog.0
launch proc_id:1384 idx:0
[2022/01/02 01:32:28] root INFO: Architecture : 
[2022/01/02 01:32:28] root INFO:     Backbone : 
[2022/01/02 01:32:28] root INFO:         model_name : small
[2022/01/02 01:32:28] root INFO:         name : MobileNetV3
[2022/01/02 01:32:28] root INFO:         scale : 0.5
[2022/01/02 01:32:28] root INFO:         small_stride : [1, 2, 2, 2]
[2022/01/02 01:32:28] root INFO:     Head : 
[2022/01/02 01:32:28] root INFO:         fc_decay : 1e-05
[2022/01/02 01:32:28] root INFO:         name : CTCHead
[2022/01/02 01:32:28] root INFO:     Neck : 
[2022/01/02 01:32:28] root INFO:         encoder_type : rnn
[2022/01/02 01:32:28] root INFO:         hidden_size : 48
[2022/01/02 01:32:28] root INFO:         name : SequenceEncoder
[2022/01/02 01:32:28] root INFO:     Transform : None
[2022/01/02 01:32:28] root INFO:     algorithm : CRNN
[2022/01/02 01:32:28] root INFO:     model_type : rec
[2022/01/02 01:32:28] root INFO: Eval : 
[2022/01/02 01:32:28] root INFO:     dataset : 
[2022/01/02 01:32:28] root INFO:         data_dir : /home/aistudio/data/street_code_rec_data/mchar_val
[2022/01/02 01:32:28] root INFO:         label_file_list : ['/home/aistudio/data/street_code_rec_data/mchar_val.csv']
[2022/01/02 01:32:28] root INFO:         name : SimpleDataSet
[2022/01/02 01:32:28] root INFO:         transforms : 
[2022/01/02 01:32:28] root INFO:             DecodeImage : 
[2022/01/02 01:32:28] root INFO:                 channel_first : False
[2022/01/02 01:32:28] root INFO:                 img_mode : BGR
[2022/01/02 01:32:28] root INFO:             CTCLabelEncode : None
[2022/01/02 01:32:28] root INFO:             RecResizeImg : 
[2022/01/02 01:32:28] root INFO:                 image_shape : [3, 32, 320]
[2022/01/02 01:32:28] root INFO:             KeepKeys : 
[2022/01/02 01:32:28] root INFO:                 keep_keys : ['image', 'label', 'length']
[2022/01/02 01:32:28] root INFO:     loader : 
[2022/01/02 01:32:28] root INFO:         batch_size_per_card : 1024
[2022/01/02 01:32:28] root INFO:         drop_last : False
[2022/01/02 01:32:28] root INFO:         num_workers : 8
[2022/01/02 01:32:28] root INFO:         shuffle : False
[2022/01/02 01:32:28] root INFO: Global : 
[2022/01/02 01:32:28] root INFO:     cal_metric_during_train : True
[2022/01/02 01:32:28] root INFO:     character_dict_path : ppocr/utils/en_dict.txt
[2022/01/02 01:32:28] root INFO:     checkpoints : ./output/rec_en_number_lite/best_accuracy.pdparams
[2022/01/02 01:32:28] root INFO:     debug : False
[2022/01/02 01:32:28] root INFO:     distributed : False
[2022/01/02 01:32:28] root INFO:     epoch_num : 500
[2022/01/02 01:32:28] root INFO:     eval_batch_step : [100, 100]
[2022/01/02 01:32:28] root INFO:     infer_img : None
[2022/01/02 01:32:28] root INFO:     infer_mode : False
[2022/01/02 01:32:28] root INFO:     log_smooth_window : 20
[2022/01/02 01:32:28] root INFO:     max_text_length : 25
[2022/01/02 01:32:28] root INFO:     pretrained_model : ./en_number_mobile_v2.0_rec_train/best_accuracy.pdparams
[2022/01/02 01:32:28] root INFO:     print_batch_step : 10
[2022/01/02 01:32:28] root INFO:     save_epoch_step : 3
[2022/01/02 01:32:28] root INFO:     save_inference_dir : None
[2022/01/02 01:32:28] root INFO:     save_model_dir : ./output/rec_en_number_lite
[2022/01/02 01:32:28] root INFO:     use_gpu : True
[2022/01/02 01:32:28] root INFO:     use_space_char : True
[2022/01/02 01:32:28] root INFO:     use_visualdl : False
[2022/01/02 01:32:28] root INFO: Loss : 
[2022/01/02 01:32:28] root INFO:     name : CTCLoss
[2022/01/02 01:32:28] root INFO: Metric : 
[2022/01/02 01:32:28] root INFO:     main_indicator : acc
[2022/01/02 01:32:28] root INFO:     name : RecMetric
[2022/01/02 01:32:28] root INFO: Optimizer : 
[2022/01/02 01:32:28] root INFO:     beta1 : 0.9
[2022/01/02 01:32:28] root INFO:     beta2 : 0.999
[2022/01/02 01:32:28] root INFO:     lr : 
[2022/01/02 01:32:28] root INFO:         learning_rate : 0.001
[2022/01/02 01:32:28] root INFO:         name : Cosine
[2022/01/02 01:32:28] root INFO:     name : Adam
[2022/01/02 01:32:28] root INFO:     regularizer : 
[2022/01/02 01:32:28] root INFO:         factor : 1e-05
[2022/01/02 01:32:28] root INFO:         name : L2
[2022/01/02 01:32:28] root INFO: PostProcess : 
[2022/01/02 01:32:28] root INFO:     name : CTCLabelDecode
[2022/01/02 01:32:28] root INFO: Train : 
[2022/01/02 01:32:28] root INFO:     dataset : 
[2022/01/02 01:32:28] root INFO:         data_dir : /home/aistudio/data/street_code_rec_data/mchar_train
[2022/01/02 01:32:28] root INFO:         label_file_list : ['/home/aistudio/data/street_code_rec_data/mchar_train.csv']
[2022/01/02 01:32:28] root INFO:         name : SimpleDataSet
[2022/01/02 01:32:28] root INFO:         transforms : 
[2022/01/02 01:32:28] root INFO:             DecodeImage : 
[2022/01/02 01:32:28] root INFO:                 channel_first : False
[2022/01/02 01:32:28] root INFO:                 img_mode : BGR
[2022/01/02 01:32:28] root INFO:             RecAug : None
[2022/01/02 01:32:28] root INFO:             CTCLabelEncode : None
[2022/01/02 01:32:28] root INFO:             RecResizeImg : 
[2022/01/02 01:32:28] root INFO:                 image_shape : [3, 32, 320]
[2022/01/02 01:32:28] root INFO:             KeepKeys : 
[2022/01/02 01:32:28] root INFO:                 keep_keys : ['image', 'label', 'length']
[2022/01/02 01:32:28] root INFO:     loader : 
[2022/01/02 01:32:28] root INFO:         batch_size_per_card : 1024
[2022/01/02 01:32:28] root INFO:         drop_last : True
[2022/01/02 01:32:28] root INFO:         num_workers : 8
[2022/01/02 01:32:28] root INFO:         shuffle : True
[2022/01/02 01:32:28] root INFO: profiler_options : None
[2022/01/02 01:32:28] root INFO: train with paddle 2.2.1 and device CUDAPlace(0)
[2022/01/02 01:32:28] root INFO: Initialize indexs of datasets:['/home/aistudio/data/street_code_rec_data/mchar_val.csv']
W0102 01:32:28.580307  1384 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1
W0102 01:32:28.584791  1384 device_context.cc:465] device: 0, cuDNN Version: 7.6.
[2022/01/02 01:32:33] root INFO: resume from ./output/rec_en_number_lite/best_accuracy
[2022/01/02 01:32:33] root INFO: metric in ckpt ***************
[2022/01/02 01:32:33] root INFO: acc:0.6261999373800062
[2022/01/02 01:32:33] root INFO: start_epoch:28
[2022/01/02 01:32:33] root INFO: norm_edit_dis:0.7362716930394972
[2022/01/02 01:32:33] root INFO: fps:4054.7339744968563
[2022/01/02 01:32:33] root INFO: best_epoch:27
eval model::   0%|          | 0/10 [00:00<?, ?it/s]
eval model::  10%|█         | 1/10 [00:03<00:32,  3.65s/it]
eval model::  20%|██        | 2/10 [00:04<00:21,  2.67s/it]
eval model::  30%|███       | 3/10 [00:04<00:14,  2.01s/it]
eval model::  40%|████      | 4/10 [00:04<00:09,  1.51s/it]
eval model::  50%|█████     | 5/10 [00:05<00:05,  1.16s/it]
eval model::  60%|██████    | 6/10 [00:05<00:03,  1.10it/s]
eval model::  70%|███████   | 7/10 [00:05<00:02,  1.35it/s]
eval model::  80%|████████  | 8/10 [00:06<00:01,  1.61it/s]
eval model::  90%|█████████ | 9/10 [00:06<00:00,  1.87it/s]
eval model:: 100%|██████████| 10/10 [00:06<00:00,  2.20it/s]
[2022/01/02 01:32:40] root INFO: metric eval ***************
[2022/01/02 01:32:40] root INFO: acc:0.6261999373800062
[2022/01/02 01:32:40] root INFO: norm_edit_dis:0.7362716930394972
[2022/01/02 01:32:40] root INFO: fps:4274.752272925087
INFO 2022-01-02 01:32:41,951 launch.py:311] Local processes completed.预测脚本使用预测训练好的模型,并将结果保存成txt格式,可以直接送到比赛提交入口测评,文件默认保存在output/rec/predicts_chinese_lite_v2.0.txt
本次比赛要求参赛选手必须提交使用深度学习平台飞桨(PaddlePaddle)训练的模型。参赛者要求以.txt 文本格式提交结果,其中每一行是图片名称和文字预测的结果,中间以 “\t” 作为分割符,示例如下:
| new_name | value | 
|---|---|
| 0.jpg | 文本0 | 
    with open(save_res_path, "w") as fout:
        # 添加列头
 	    fout.write('file_name' + "," + 'file_code' +'\n')
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            if config['Architecture']['algorithm'] == "SRN":
                encoder_word_pos_list = np.expand_dims(batch[1], axis=0)
                gsrm_word_pos_list = np.expand_dims(batch[2], axis=0)
                gsrm_slf_attn_bias1_list = np.expand_dims(batch[3], axis=0)
                gsrm_slf_attn_bias2_list = np.expand_dims(batch[4], axis=0)
                others = [
                    paddle.to_tensor(encoder_word_pos_list),
                    paddle.to_tensor(gsrm_word_pos_list),
                    paddle.to_tensor(gsrm_slf_attn_bias1_list),
                    paddle.to_tensor(gsrm_slf_attn_bias2_list)
                ]
            if config['Architecture']['algorithm'] == "SAR":
                valid_ratio = np.expand_dims(batch[-1], axis=0)
                img_metas = [paddle.to_tensor(valid_ratio)]
            images = np.expand_dims(batch[0], axis=0)
            images = paddle.to_tensor(images)
            if config['Architecture']['algorithm'] == "SRN":
                preds = model(images, others)
            elif config['Architecture']['algorithm'] == "SAR":
                preds = model(images, img_metas)
            else:
                preds = model(images)
            post_result = post_process_class(preds)
            info = None
            if isinstance(post_result, dict):
                rec_info = dict()
                for key in post_result:
                    if len(post_result[key][0]) >= 2:
                        rec_info[key] = {                            "label": post_result[key][0][0],                            "score": float(post_result[key][0][1]),
                        }
                info = json.dumps(rec_info)
            else:
                if len(post_result[0]) >= 2:
                    info = post_result[0][0] + "\t" + str(post_result[0][1])
            if info is not None:
                logger.info("\t result: {}".format(info))
                fout.write(file + "," +  post_result[0][0] +'\n')
    logger.info("success!")%cd ~/PaddleOCR/# mobile模型!python tools/infer_rec.py -c configs/rec/multi_language/rec_en_number_lite_train.yml \
    -o Global.infer_img="/home/aistudio/data/street_code_rec_data/mchar_test_a" \
    Global.checkpoints=./output/rec_en_number_lite/best_accuracy.pdparams预测日志
[2022/01/02 02:01:08] root INFO: result: 2123 0.9544541[2022/01/02 02:01:08] root INFO: infer_img: /home/aistudio/data/street_code_rec_data/mchar_test_a/039996.png [2022/01/02 02:01:08] root INFO: result: 341 0.8990403[2022/01/02 02:01:08] root INFO: infer_img: /home/aistudio/data/street_code_rec_data/mchar_test_a/039997.png [2022/01/02 02:01:08] root INFO: result: 167 0.95185596[2022/01/02 02:01:08] root INFO: infer_img: /home/aistudio/data/street_code_rec_data/mchar_test_a/039998.png [2022/01/02 02:01:08] root INFO: result: 235 0.9978804[2022/01/02 02:01:08] root INFO: infer_img: /home/aistudio/data/street_code_rec_data/mchar_test_a/039999.png [2022/01/02 02:01:08] root INFO: result: 910 0.93325263[2022/01/02 02:01:08] root INFO: success! ... ...
约束性条件1:模型总大小不超过10MB(以.pdmodel和.pdiparams文件非压缩状态磁盘占用空间之和为准);
训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。实际上,此处的约束条件限制的是inference 模型的大小。inference 模型一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成,模型大小也会小一些。
# 静态模型导出%cd ~/PaddleOCR/# mobile模型!python tools/export_model.py -c   configs/rec/multi_language/rec_en_number_lite_train.yml \
    -o Global.checkpoints=./output/rec_en_number_lite/best_accuracy.pdparams \
    Global.save_inference_dir=./inference/rec_inference//home/aistudio/PaddleOCR W0102 02:06:39.026404 4766 device_context.cc:447] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.1, Runtime API Version: 10.1 W0102 02:06:39.030951 4766 device_context.cc:465] device: 0, cuDNN Version: 7.6. [2022/01/02 02:06:43] root INFO: resume from ./output/rec_en_number_lite/best_accuracy [2022/01/02 02:06:45] root INFO: inference model is saved to ./inference/rec_inference/inference
%cd ~/PaddleOCR/ !du -sh ./inference/rec_inference/
/home/aistudio/PaddleOCR 2.8M ./inference/rec_inference/
# 使用导出静态模型预测%cd ~/PaddleOCR/ !python3.7 tools/infer/predict_rec.py --rec_model_dir=./inference/rec_inference/ --image_dir="/home/aistudio/data/street_code_rec_data/mchar_test_a"
预测日志
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012500.png:('疗绚娇', 0.71012855)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012501.png:('绚诚', 0.9246478)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012502.png:('溜', 0.93994504)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012503.png:('诚溜', 0.95832443)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012504.png:('溜溜', 0.87103844)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012505.png:('贿', 0.34199885)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012506.png:('题', 0.9996681)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012507.png:('绚绚', 0.9908391)
[2022/01/02 02:08:37] root INFO: Predicts of /home/aistudio/data/street_code_rec_data/mchar_test_a/012508.png:('绚', 0.58176464)
...
...预测结果保存到配置文件指定的 output/rec/predicts_chinese_lite_v2.0.txt文件,可直接提交即可。
%cd ~ !head PaddleOCR/output/rec/predicts_rec.txt
/home/aistudio file_name,file_code /home/aistudio/data/street_code_rec_data/mchar_test_a/000000.png,59 /home/aistudio/data/street_code_rec_data/mchar_test_a/000001.png,290 /home/aistudio/data/street_code_rec_data/mchar_test_a/000002.png,113 /home/aistudio/data/street_code_rec_data/mchar_test_a/000003.png,97 /home/aistudio/data/street_code_rec_data/mchar_test_a/000004.png,63 /home/aistudio/data/street_code_rec_data/mchar_test_a/000005.png,39 /home/aistudio/data/street_code_rec_data/mchar_test_a/000006.png,126 /home/aistudio/data/street_code_rec_data/mchar_test_a/000007.png,1475 /home/aistudio/data/street_code_rec_data/mchar_test_a/000008.png,48

随便跑跑82分,大家可以再处理处理,把检测数据也用上,优化优化,多跑几轮,一定可以取得更好的成绩。
以上就是基于PaddleOCR2.4的天池街景字符编码识别Baseline的详细内容,更多请关注php中文网其它相关文章!
                        
                        每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。
                Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号