0

0

飞桨常规赛:PALM眼底彩照中黄斑中央凹定位-7月第3名方案

P粉084495128

P粉084495128

发布时间:2025-07-29 11:39:26

|

199人浏览过

|

来源于php中文网

原创

本文围绕飞桨常规赛中PALM眼底彩照黄斑中央凹定位任务展开。介绍了用resnet50加载预训练模型,准备数据集并划分训练集与验证集,定义模型结构,采用自定义损失函数,通过PolynomialDecay优化器训练,最后对测试集预测并输出结果的全过程。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

飞桨常规赛:palm眼底彩照中黄斑中央凹定位-7月第3名方案 - php中文网

飞桨常规赛:PALM眼底彩照中黄斑中央凹定位

0. 赛题介绍

常规赛:PALM眼底彩照中黄斑中央凹定位由ISBI2019 PALM眼科挑战赛赛题再现,其中黄斑中央凹定位的任务旨在对眼科图像进行判断是否存在黄斑中央凹,并对其进行定位。

数据集由中山大学中山眼科中心提供800张带黄斑中央凹坐标标注的眼底彩照供选手训练模型,另提供400张带标注数据供平台进行模型测试。图像分辨率为1444×1444,或2124124×2056。黄斑中央凹坐标信息存储在xlsx文件中,名为“Fovea_Location_train”,第一列对应眼底图像的文件名(包括扩展名“.jpg”),第二列包含x坐标,第三列包含y坐标。

评价指标为平均欧式距离,计算每个测试样本预测的黄斑中央凹坐标与金标准的差距,最终计算平均的欧式距离。 最终评分为平均欧式距离的倒数。

飞桨常规赛:PALM眼底彩照中黄斑中央凹定位-7月第3名方案 - php中文网        

比赛链接: 常规赛:PALM眼底彩照中黄斑中央凹定位

1. 包准备

用resnet50加载一个训练更多的预训练模型。

In [ ]
import osimport pandas as pdimport numpy as npimport paddleimport paddle.vision.transforms as Tfrom paddle.io import Datasetfrom PIL import Image
       
/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/layers/utils.py:26: DeprecationWarning: `np.int` is a deprecated alias for the builtin `int`. To silence this warning, use `int` by itself. Doing this will not modify any behavior and is safe. When replacing `np.int`, you may wish to use e.g. `np.int64` or `np.int32` to specify the precision. If you wish to review your current use, check the release note link for additional information.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
  def convert_to_list(value, n, name, dtype=np.int):
       

2. 数据准备

2.1解压数据集

In [ ]
! unzip -oq data/data100179/常规赛:PALM眼底彩照中黄斑中央凹定位.zip! rm -rf __MACOSX
! mv 常规赛:PALM眼底彩照中黄斑中央凹定位 PLAM
   

2.2 配置数据集

  1. 因为数据中本身就有了这个图像名和标签,我们就不用生成数据列表了。直接继承io中的Dataset,用于读取数据。因为与开始说数据的大小有两种分辨率为1444×1444,或2124124×2056。这里都放到了1440+360=1800,基本上取二者之间吧。
  2. 划分的比列为0.85,图像增强只有简单的色彩和水平翻转。
  3. 这里主要注意当图像大小发生了变化,对应的中央凹的坐标也需要进行相应的变化。数据增广就没有写几何变换有关的了,因为这样就要自己写一下对应增强。
  4. 最开始数据我还加上了是否存在的类别标签,但是后期效果不明显,可能是自己的原因,这里给注释了,大佬们觉得有道理也可是试试。

2.3 数据说明

飞桨常规赛:PALM眼底彩照中黄斑中央凹定位-7月第3名方案 - php中文网        

In [ ]
import warnings
warnings.filterwarnings("ignore") #拒绝烦人的警告信息
   
In [ ]
from paddle.io import DataLoader

tpsize = 256 split = 0.9batch_size = 16class PLAMDatas(Dataset):
    def __init__(self, data_path, class_xls, mode='train', transforms=None, re_size=tpsize):
        super(PLAMDatas, self).__init__()
        self.data_path = data_path
        self.name_label = (pd.read_excel(class_xls)).values
        lens = len(self.name_label)        if mode == 'train':
            self.name_label = self.name_label[:int(split*lens)]        else:
            self.name_label = self.name_label[int(split*lens):]
        self.transforms = transforms
        self.re_size = re_size        
    def __getitem__(self, index):
        name, x, y = self.name_label[index] # 得到的数据赋值一下
        data_path = os.path.join(self.data_path, name) # 文件系统路径+图片的name=图片的路径
        data = np.asarray(Image.open(data_path).convert('RGB'))
        H, W, _ = data.shape        if self.transforms is not None:
            data = self.transforms(data)
        data = data.astype('float32')
        
        label = np.array([x * self.re_size / W, y * self.re_size / H]).astype('float32') # 图片大小变了,对应的坐标自然也要改变
        return data, label        
    def __len__(self):
        return len(self.name_label)# 配置数据增广train_transforms = T.Compose([
    T.Resize((tpsize, tpsize), interpolation='bicubic'), #都调整到1800 选用bicubic,放大不至于太失真
   	T.ToTensor()
])

val_transforms = T.Compose([
    T.Resize((tpsize, tpsize), interpolation='bicubic'),
    T.ToTensor()
])# 配置数据集train_dataset = PLAMDatas(data_path='PLAM/Train/fundus_image', class_xls='PLAM/Train/Fovea_Location_train.xlsx', mode='train', transforms=train_transforms)
val_dataset = PLAMDatas(data_path='PLAM/Train/fundus_image', class_xls='PLAM/Train/Fovea_Location_train.xlsx', mode='test', transforms=val_transforms)

train_dataloader = DataLoader(dataset=train_dataset, 
                              batch_size=batch_size,
                              shuffle=True, drop_last=False)
dev_dataloader = DataLoader( dataset=val_dataset, 
                             batch_size=batch_size,
                             shuffle=True, drop_last=False)
   

这里也可以输出测试一下,看看数据读取有没有什么问题。避免后面报一堆错不知道哪儿去找问题。顺便看看点是不是点到位了。

In [ ]
print(len(train_dataset), len(val_dataset))print(len(train_dataloader), len(dev_dataloader))
       
720 80
45 5
       

3. 模型训练

3.1 模型准备

In [ ]
import paddleimport paddle.nn as nnfrom paddle.vision.models import resnet50# 模型定义# pre_params = paddle.load('resnet_50_save_models/final.pdparams')# model.set_state_dict(pre_params)model = nn.Sequential(
    resnet50(pretrained=True),
    nn.LeakyReLU(),
    nn.Linear(1000, 2)  # 坐标定位)
paddle.summary(model, (1, 3, tpsize, tpsize))
model = paddle.Model(model)
   
2021-07-23 14:09:08,122 - INFO - unique_endpoints {''}2021-07-23 14:09:08,124124 - INFO - Downloading resnet50.pdparams from https://paddle-hapi.bj.bcebos.com/models/resnet50.pdparams100%|██████████| 151272/151272 [00:02<00:00, 61339.97it/s]2021-07-23 14:09:10,837 - INFO - File /home/aistudio/.cache/paddle/hapi/weights/resnet50.pdparams md5 checking...-------------------------------------------------------------------------------
   Layer (type)         Input Shape          Output Shape         Param #    
===============================================================================
     Conv2D-1        [[1, 3, 256, 256]]   [1, 64, 128, 128]        9,408     
   BatchNorm2D-1    [[1, 64, 128, 128]]   [1, 64, 128, 128]         256      
      ReLU-1        [[1, 64, 128, 128]]   [1, 64, 128, 128]          0       
    MaxPool2D-1     [[1, 64, 128, 128]]    [1, 64, 64, 64]           0       
     Conv2D-3        [[1, 64, 64, 64]]     [1, 64, 64, 64]         4,096     --------------------------------省略-------------------------------------------BottleneckBlock-16   [[1, 2048, 8, 8]]     [1, 2048, 8, 8]           0       AdaptiveAvgPool2D-1  [[1, 2048, 8, 8]]     [1, 2048, 1, 1]           0       
     Linear-1           [[1, 2048]]           [1, 1000]          2,049,000   
     ResNet-1        [[1, 3, 256, 256]]       [1, 1000]              0       
    LeakyReLU-1         [[1, 1000]]           [1, 1000]              0       
     Linear-2           [[1, 1000]]             [1, 2]             2,002     ===============================================================================
Total params: 25,612,154Trainable params: 25,505,914Non-trainable params: 106,240-------------------------------------------------------------------------------Input size (MB): 0.75Forward/backward pass size (MB): 341.54Params size (MB): 97.70Estimated Total Size (MB): 439.99-------------------------------------------------------------------------------
   

3.2 损失设定

这里采用红白黑大佬设计了loss损失函数,计算MSE和欧氏距离加权后的平均损失值

MusicLM
MusicLM

谷歌平台的AI作曲工具,用文字生成音乐

下载
In [14]
# 自定义损失import paddleimport paddle.nn as nnimport paddle.nn.functional as Fclass FocusBCELoss(nn.Layer):
    '''
        本赛题的任务损失函数
    '''
    def __init__(self, weights=[0.5, 0.5]):
        super(FocusBCELoss, self).__init__()
        self.weights = weights  # 损失权重

    def forward(self, predict, label):
        # MSE均方误差
        mse_loss_x = paddle.nn.functional.mse_loss(predict[:, 0], label[:, 0], reduction='mean')
        mse_loss_y = paddle.nn.functional.mse_loss(predict[:, 1], label[:, 1], reduction='mean')
        mse_loss = 0.5 * mse_loss_x + 0.5 * mse_loss_y        # 欧氏距离
        distance_loss = paddle.subtract(predict, label)
        distance_loss = paddle.square(distance_loss)
        distance_loss = paddle.sum(distance_loss, axis=-1)
        distance_loss = paddle.sqrt(distance_loss)
        distance_loss = paddle.sum(distance_loss, axis=0) / predict.shape[0]   # predict.shape[0] == batch_size
        
        alpha1, alpha2 = self.weights
        all_loss = alpha1*mse_loss + alpha2*distance_loss        return all_loss, mse_loss, distance_loss
   

3.3 开始训练

这里采用PolynomialDecay跑

运行时长: 16小时20分钟53秒401毫秒

In [15]
# 模型准备epochs = 1000lr = paddle.optimizer.lr.PolynomialDecay(learning_rate=2e-3, decay_steps=int(800*tpsize))
opt = paddle.optimizer.Adam(learning_rate=lr, parameters=model.parameters(), weight_decay=paddle.regularizer.L2Decay(5e-6))
loss  = FocusBCELoss(weights=[0.4, 0.6])   # weights,不同类别的损失权重model.prepare(
    optimizer = opt, 
    loss = loss
    )
visualdl=paddle.callbacks.VisualDL(log_dir='visual_log')#在使用GPU机器时,可以将use_gpu变量设置成Trueuse_gpu = Truepaddle.set_device('gpu:0') if use_gpu else paddle.set_device('cpu')# 模型微调model.fit(
    train_data=train_dataset, 
    eval_data=val_dataset, 
    batch_size=batch_size, 
    epochs=epochs, 
    eval_freq=10, 
    log_freq=1, 
    save_dir='resnet_50_save_models_256_0.9_16', 
    save_freq=10, 
    verbose=1, 
    drop_last=False, 
    shuffle=True, 
    num_workers=0,
    callbacks=[visualdl]
)
   

跑完1000轮之后的loss基本上稳定在了0.5-2.5

Epoch 993/1000step 45/45 [==============================] - loss: 0.7025 0.5066 0.8331 - 1s/step        Epoch 994/1000step 45/45 [==============================] - loss: 1.8822 2.1647 1.6938 - 1s/step        Epoch 995/1000step 45/45 [==============================] - loss: 2.5339 2.9379 2.2646 - 1s/step         Epoch 996/1000step 45/45 [==============================] - loss: 1.3060 1.2016 1.3756 - 1s/step         Epoch 997/1000step 45/45 [==============================] - loss: 0.7337 0.4999 0.8896 - 1s/step         Epoch 998/1000step 45/45 [==============================] - loss: 1.0640 0.8573 1.2018 - 1s/step        Epoch 999/1000step 45/45 [==============================] - loss: 1.3307 1.1557 1.4473 - 1s/step        Epoch 1000/1000step 45/45 [==============================] - loss: 0.5870 0.3452 0.7482 - 1s/step
       

可视化情况如下:

飞桨常规赛:PALM眼底彩照中黄斑中央凹定位-7月第3名方案 - php中文网        

4. 模型预测

预测这里就是因为图像的大小变了,所以预测得到的坐标还需要进行一次计算还原到原来的大小,感觉这也是误差的一个来源。

In [16]
import osimport numpy as npimport pandas as pdfrom PIL import Imageimport paddle.vision.transforms as Timport paddleimport paddle.nn as nnimport paddle.nn.functional as Ffrom paddle.vision.models import resnet50

save_path = 'Fovea_Localization_Results.csv'file_path = 'PLAM/PALM-Testing400-Images'imgs_name = os.listdir(file_path)

model = nn.Sequential(
    resnet50(pretrained=False),
    nn.LeakyReLU(),
    nn.Linear(1000, 2)
)
params = paddle.load('resnet_50_save_models_256_0.9_16/final.pdparams')
model.set_state_dict(params)
model.eval()

inf_transforms = T.Compose([
    T.Resize((tpsize, tpsize), interpolation='bicubic'),
    T.ToTensor()
])

pre_data = []for img_name in imgs_name:
    data_path = os.path.join(file_path, img_name)
    data = np.asarray(Image.open(data_path).convert('RGB'))
    H, W, _ = data.shape
    data = inf_transforms(data)
    data = data.astype('float32').reshape([1, 3, tpsize, tpsize])
    pred = model(data)
    pre = [None] * 2
    # 还原坐标
    pre[0] = pred.numpy()[0][0] * W / tpsize
    pre[1] = pred.numpy()[0][1] * H / tpsize    print(img_name, pre)
    pre_data.append([img_name, pre[0], pre[1]])

df = pd.DataFrame(pre_data, columns=['FileName', 'Fovea_X', 'Fovea_Y'])
df.sort_values(by="FileName",inplace=True,ascending=True)  #千万记得排序!df.to_csv(save_path, index=None)
   
In [17]
df
       
      FileName      Fovea_X      Fovea_Y
180  T0001.jpg  1293.032825   990.452656
319  T0002.jpg  1078.404609  1054.413445
114  T0003.jpg  1038.041723  1045.842130
381  T0004.jpg  1195.271087  1053.216895
124124  T0005.jpg  1229.637487   723.297234
..         ...          ...          ...
246  T0396.jpg  1208.370796   972.463286
127  T0397.jpg  1241245.531012  1054.355603
207  T0398.jpg  1310.560631   998.023864
335  T0399.jpg  1031.135805  1115.349770
330  T0400.jpg  1141.022628   719.758717

[400 rows x 3 columns]
               

5. 查看结果

In [18]
import osimport numpy as npimport pandas as pdfrom PIL import Imageimport matplotlib.pyplot as plt

%matplotlib inline

path = 'PLAM/PALM-Testing400-Images'flrs = np.array(pd.read_csv('Fovea_Localization_Results.csv'))for flr in flrs:
    img = np.array(Image.open(os.path.join(path, flr[0])))
    x, y = flr[1:]
    plt.imshow(img.astype('uint8'))
    plt.plot(x, y, 'or')
    plt.show()    break
       
2021-07-24 11:51:37,562 - INFO - font search path ['/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/ttf', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/afm', '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/mpl-data/fonts/pdfcorefonts']
2021-07-24 11:51:38,128 - INFO - generated new fontManager
       
               

相关专题

更多
堆和栈的区别
堆和栈的区别

堆和栈的区别:1、内存分配方式不同;2、大小不同;3、数据访问方式不同;4、数据的生命周期。本专题为大家提供堆和栈的区别的相关的文章、下载、课程内容,供大家免费下载体验。

388

2023.07.18

堆和栈区别
堆和栈区别

堆(Heap)和栈(Stack)是计算机中两种常见的内存分配机制。它们在内存管理的方式、分配方式以及使用场景上有很大的区别。本文将详细介绍堆和栈的特点、区别以及各自的使用场景。php中文网给大家带来了相关的教程以及文章欢迎大家前来学习阅读。

571

2023.08.10

Golang gRPC 服务开发与Protobuf实战
Golang gRPC 服务开发与Protobuf实战

本专题系统讲解 Golang 在 gRPC 服务开发中的完整实践,涵盖 Protobuf 定义与代码生成、gRPC 服务端与客户端实现、流式 RPC(Unary/Server/Client/Bidirectional)、错误处理、拦截器、中间件以及与 HTTP/REST 的对接方案。通过实际案例,帮助学习者掌握 使用 Go 构建高性能、强类型、可扩展的 RPC 服务体系,适用于微服务与内部系统通信场景。

8

2026.01.15

公务员递补名单公布时间 公务员递补要求
公务员递补名单公布时间 公务员递补要求

公务员递补名单公布时间不固定,通常在面试前,由招录单位(如国家知识产权局、海关等)发布,依据是原入围考生放弃资格,会按笔试成绩从高到低递补,递补考生需按公告要求限时确认并提交材料,及时参加面试/体检等后续环节。要求核心是按招录单位公告及时响应、提交材料(确认书、资格复审材料)并准时参加面试。

38

2026.01.15

公务员调剂条件 2026调剂公告时间
公务员调剂条件 2026调剂公告时间

(一)符合拟调剂职位所要求的资格条件。 (二)公共科目笔试成绩同时达到拟调剂职位和原报考职位的合格分数线,且考试类别相同。 拟调剂职位设置了专业科目笔试条件的,专业科目笔试成绩还须同时达到合格分数线,且考试类别相同。 (三)未进入原报考职位面试人员名单。

52

2026.01.15

国考成绩查询入口 国考分数公布时间2026
国考成绩查询入口 国考分数公布时间2026

笔试成绩查询入口已开通,考生可登录国家公务员局中央机关及其直属机构2026年度考试录用公务员专题网站http://bm.scs.gov.cn/pp/gkweb/core/web/ui/business/examResult/written_result.html,查询笔试成绩和合格分数线,点击“笔试成绩查询”按钮,凭借身份证及准考证进行查询。

10

2026.01.15

Java 桌面应用开发(JavaFX 实战)
Java 桌面应用开发(JavaFX 实战)

本专题系统讲解 Java 在桌面应用开发领域的实战应用,重点围绕 JavaFX 框架,涵盖界面布局、控件使用、事件处理、FXML、样式美化(CSS)、多线程与UI响应优化,以及桌面应用的打包与发布。通过完整示例项目,帮助学习者掌握 使用 Java 构建现代化、跨平台桌面应用程序的核心能力。

65

2026.01.14

php与html混编教程大全
php与html混编教程大全

本专题整合了php和html混编相关教程,阅读专题下面的文章了解更多详细内容。

36

2026.01.13

PHP 高性能
PHP 高性能

本专题整合了PHP高性能相关教程大全,阅读专题下面的文章了解更多详细内容。

75

2026.01.13

热门下载

更多
网站特效
/
网站源码
/
网站素材
/
前端模板

精品课程

更多
相关推荐
/
热门推荐
/
最新课程
最新Python教程 从入门到精通
最新Python教程 从入门到精通

共4课时 | 0.7万人学习

Django 教程
Django 教程

共28课时 | 3.1万人学习

SciPy 教程
SciPy 教程

共10课时 | 1.1万人学习

关于我们 免责申明 举报中心 意见反馈 讲师合作 广告合作 最新更新
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送

Copyright 2014-2026 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号