【AAAI 2023】ATMNet:使用主动Token混合的MLP架构

P粉084495128
发布: 2025-07-30 11:17:06
原创
556人浏览过
ActiveMLP提出主动Token混合器(ATM),能主动选择各通道Token,灵活合并跨通道上下文信息,在有限计算下扩展Token混合空间范围至全局。以ATM为核心组成ATMNet,在视觉识别等任务中全面超越现有SOTA骨干。文中展示了其架构(含ATM层、Block等),在CIFAR10上训练,ActivexTiny等模型表现出良好准确率与吞吐量。

☞☞☞AI 智能聊天, 问答助手, AI 智能搜索, 免费无限量使用 DeepSeek R1 模型☜☜☜

【aaai 2023】atmnet:使用主动token混合的mlp架构 - php中文网

ActiveMLP:使用主动Token混合的MLP架构

摘要

        现有的三个主流网络家族,即CNNS、Transformers和MLPs,主要在融合空间上下文信息的方式上存在差异,使得设计更有效的令牌混合机制成为骨干架构开发的核心。 在这项工作中,我们创新性地提出了一个Token混合器,称为主动Token混合器(ATM),它可以主动地将来自其他令牌的跨不同通道分布的上下文信息灵活地合并到给定的查询Token中。 这个基本运算符主动预测在哪里捕获有用的上下文,并学习如何将捕获的上下文与通道级别的查询Token融合。 这样,在有限的计算复杂度下,可以将Token混合的空间范围扩展到全局范围,从而对Token混合的方式进行了改革。 我们以ATM为主要算子,将ATM组装成一个级联架构,称为ATMNet。 大量的实验表明,ATMNet是普遍适用的,在包括视觉识别和密集预测任务在内的多种视觉任务中,它以明显的优势全面超越了不同种类的SOTA视觉骨干。

1. ActiveMLP

        现有的三个主流网络家族(CNN、Transformer、MLP)可以统一地表示为如下公式:

f(X)xq=kN(xq)ωkqg(xk)f(X)∣xq=k∈N(xq)∑ωk→q∗g(xk)

腾讯混元
腾讯混元

腾讯混元大由腾讯研发的大语言模型,具备强大的中文创作能力、逻辑推理能力,以及可靠的任务执行能力。

腾讯混元 65
查看详情 腾讯混元

其中 xqxq 表示查询Token, N(xq)N(xq) 表示查询Token的上下文, ωkqωk→q 表示从 xkxk 到 xqxq 的信息传播程度。
        对于网络架构设计,本文提出了如下两个关键见解:

  1. 对于空间维度,视觉对象/东西呈现出不同的形状和变形。 因此,在固定范围 N()N(⋅) 内的信息混合是低效和不充分的。 信息传递的自适应 ωkqωk→q 和 N()N(⋅) 是提取可视表示的理想选择
  2. 对于通道维度,一个令牌中携带的多个语义属性分布于其不同的通道,在所有通道上共享 ωkqRωk→q∈R 的Token级消息传递不能自适应地处理不同语义,限制了它们的充分利用,因而效率较低。

        为此本文提出了一种新的算子ATM,如图1所示,该算子的主要思想是通过输入自适应地选择各个通道的Token,然后使用一个MLP进行聚合信息,为了减少计算量,本文分别在H、W、C三个维度进行该操作,然后使用Split Attention进行聚合。

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

2. 代码复现

2.1 下载并导入所需的库

In [ ]
%matplotlib inlineimport paddleimport numpy as npimport matplotlib.pyplot as pltfrom paddle.vision.datasets import Cifar10from paddle.vision.transforms import Transposefrom paddle.io import Dataset, DataLoaderfrom paddle import nnimport paddle.nn.functional as Fimport paddle.vision.transforms as transformsimport osimport matplotlib.pyplot as pltfrom matplotlib.pyplot import figureimport itertoolsfrom functools import partialfrom paddle.vision.ops import deform_conv2d
登录后复制
   

2.2 创建数据集

In [3]
train_tfm = transforms.Compose([
    transforms.RandomResizedCrop(224),
    transforms.ColorJitter(brightness=0.2,contrast=0.2, saturation=0.2),
    transforms.RandomHorizontalFlip(0.5),
    transforms.RandomRotation(20),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])

test_tfm = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
])
登录后复制
   
In [4]
paddle.vision.set_image_backend('cv2')# 使用Cifar10数据集train_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='train', transform = train_tfm, )
val_dataset = Cifar10(data_file='data/data152754/cifar-10-python.tar.gz', mode='test',transform = test_tfm)print("train_dataset: %d" % len(train_dataset))print("val_dataset: %d" % len(val_dataset))
登录后复制
       
train_dataset: 50000
val_dataset: 10000
登录后复制
       
In [5]
batch_size=256
登录后复制
   
In [6]
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, drop_last=True, num_workers=4)
val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=4)
登录后复制
   

2.3 模型的创建

2.3.1 标签平滑

In [7]
class LabelSmoothingCrossEntropy(nn.Layer):
    def __init__(self, smoothing=0.1):
        super().__init__()
        self.smoothing = smoothing    def forward(self, pred, target):

        confidence = 1. - self.smoothing
        log_probs = F.log_softmax(pred, axis=-1)
        idx = paddle.stack([paddle.arange(log_probs.shape[0]), target], axis=1)
        nll_loss = paddle.gather_nd(-log_probs, index=idx)
        smooth_loss = paddle.mean(-log_probs, axis=-1)
        loss = confidence * nll_loss + self.smoothing * smooth_loss        return loss.mean()
登录后复制
   

2.3.2 DropPath

In [8]
def drop_path(x, drop_prob=0.0, training=False):
    """
    Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
    """
    if drop_prob == 0.0 or not training:        return x
    keep_prob = paddle.to_tensor(1 - drop_prob)
    shape = (paddle.shape(x)[0],) + (1,) * (x.ndim - 1)
    random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
    random_tensor = paddle.floor(random_tensor)  # binarize
    output = x.divide(keep_prob) * random_tensor    return outputclass DropPath(nn.Layer):
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
登录后复制
   

2.3.3 ATMNet模型的创建

2.3.3.1 FFN
In [9]
class Mlp(nn.Layer):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)        return x
登录后复制
   
2.3.3.2 ATM操作符
In [10]
class ATMOp(nn.Layer):
    def __init__(self, in_chans, out_chans, stride=1, padding=0, dilation=1, bias=True, dimension=''):
        super().__init__()
        self.in_chans = in_chans
        self.out_chans = out_chans
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.dimension = dimension

        self.weight = self.create_parameter([out_chans, in_chans, 1, 1])        if bias:
            self.bias = self.create_parameter([out_chans])        else:
            self.bias = None

    def forward(self, x, offset):
        B, C, H, W = x.shape
        offset_t = paddle.zeros((B, 2 * C * 1 * 1, H, W))        if self.dimension == 'w':
            offset_t[:, 1::2, :, :] += offset        elif self.dimension == 'h':
            offset_t[:, 0::2, :, :] += offset        else:            raise NotImplementedError(f"{self.dimension} dimension not implemented")        return deform_conv2d(x, offset_t, self.weight, self.bias, self.stride, self.padding, self.dilation, deformable_groups=C)
登录后复制
   
2.3.3.3 ATM层
In [11]
class ATMLayer(nn.Layer):
    def __init__(self, dim, proj_drop=0.):
        super().__init__()
        self.dim = dim

        self.atm_c = nn.Linear(dim, dim, bias_attr=False)
        self.atm_h = ATMOp(dim, dim, dimension='h')
        self.atm_w = ATMOp(dim, dim, dimension='w')

        self.fusion = Mlp(dim, dim // 4, dim * 3)

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)    def forward(self, x, offset):
        """
        x: [B, H, W, C]
        offsets: [B, 2C, H, W]
        """
        B, H, W, C = x.shape        # assert offset.shape == (B, 2 * C, H, W), f"offset shape not match, got {offset.shape}"
        w = self.atm_w(x.transpose([0, 3, 1, 2]), offset[:, :C, :, :]).transpose([0, 2, 3, 1])
        h = self.atm_h(x.transpose([0, 3, 1, 2]), offset[:, C:, :, :]).transpose([0, 2, 3, 1])
        c = self.atm_c(x)

        a = (w + h + c).transpose([0, 3, 1, 2]).flatten(2).mean(2)
        a = self.fusion(a).reshape((B, C, 3)).transpose([2, 0, 1])
        a = F.softmax(a, axis=0).unsqueeze(2).unsqueeze(2)

        x = w * a[0] + h * a[1] + c * a[2]

        x = self.proj(x)
        x = self.proj_drop(x)        return x
登录后复制
   
2.3.3.4 ATM Block
In [12]
class ActiveBlock(nn.Layer):
    def __init__(self, dim, mlp_ratio=4., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 share_dim=1, downsample=None, new_offset=False,                 ):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.atm = ATMLayer(dim)
        self.norm2 = norm_layer(dim)
        self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.downsample = downsample

        self.new_offset = new_offset
        self.share_dim = share_dim        if new_offset:
            self.offset_layer = nn.Sequential(
                    norm_layer(dim),
                    nn.Linear(dim, dim * 2 // self.share_dim)
                )        else:
            self.offset_layer = None

    def forward(self, x, offset=None):
        """
        :param x: [B, H, W, C]
        :param offset: [B, 2C, H, W]
        """
        if self.offset_layer and offset is None:
            offset = self.offset_layer(x)
            offset = paddle.repeat_interleave(offset, self.share_dim, axis=3).transpose([0, 3, 1, 2])

        x = x + self.drop_path(self.atm(self.norm1(x), offset))
        x = x + self.drop_path(self.mlp(self.norm2(x)))        if self.downsample is not None:
            x = self.downsample(x)        if self.offset_layer:            return x, offset        else:            return x
登录后复制
   
2.3.3.5 Downsample
In [13]
class Downsample(nn.Layer):
    def __init__(self, in_chans, out_chans):
        super().__init__()
        self.proj = nn.Conv2D(in_chans, out_chans, kernel_size=(3, 3), stride=(2, 2), padding=1)    def forward(self, x):
        """
        x: [B, H, W, C]
        """
        x = x.transpose([0, 3, 1, 2])
        x = self.proj(x)
        x = x.transpose([0, 2, 3, 1])        return x
登录后复制
   
2.3.3.6 条件位置编码

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

In [14]
class PEG(nn.Layer):
    """
    PEG
    from https://arxiv.org/abs/2102.10882
    """
    def __init__(self, in_chans, stride=1):
        super().__init__()        # depth conv
        self.proj = nn.Conv2D(in_chans, in_chans, kernel_size=3, stride=stride, padding=1, bias_attr=True, groups=in_chans)
        self.stride = stride    def forward(self, x):
        """
        x: [B, H, W, C]
        """
        x_conv = x.transpose([0, 3, 1, 2])        if self.stride == 1:
            x = self.proj(x_conv) + x_conv        else:
            x = self.proj(x_conv)
        x = x.transpose([0, 2, 3, 1])        return x
登录后复制
   
2.3.3.7 Patch Embedding
In [15]
class OverlapPatchEmbed(nn.Layer):
    """
    Overlaped patch embedding, implemeted with 2D conv
    """
    def __init__(self, in_chans=3, embed_dim=64, patch_size=7, stride=4, padding=2):
        super().__init__()

        self.proj = nn.Conv2D(in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=padding)    def forward(self, x):
        """
        x: [B, C, H, W]
        return: [B, H, W, C]
        """
        x = self.proj(x)
        x = x.transpose([0, 2, 3, 1])        return x
登录后复制
   
2.3.3.8 ActiveMLP
In [16]
class ActiveMLP(nn.Layer):
    def __init__(
        self,
        img_size=224,
        patch_size=4,
        in_chans=3,
        num_classes=1000,
        depths=[2, 2, 4, 2],
        embed_dims=[64, 128, 320, 512],
        mlp_ratios=[4, 4, 4, 4],
        share_dims=[1, 1, 1, 1],  # how many channels share one offset
        drop_path_rate=0.,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        intv=2,  # interval for generating new offset
    ):

        super().__init__()

        self.depths = depths
        self.num_classes = num_classes
        self.intv = intv

        self.patch_embed = OverlapPatchEmbed(in_chans=3, embed_dim=embed_dims[0], patch_size=7, stride=4, padding=2)

        dpr = [x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))]
        ii = 0
        self.blocks = nn.LayerList()        for i in range(len(depths)):
            _block = nn.LayerList([
                ActiveBlock(embed_dims[i],
                            mlp_ratio=mlp_ratios[i],
                            drop_path=dpr[ii + j],
                            share_dim=share_dims[i],
                            act_layer=act_layer,
                            norm_layer=norm_layer,
                            downsample=Downsample(embed_dims[i], embed_dims[i + 1]) if i < len(depths) - 1 and j == depths[i] - 1 else None,
                            new_offset=(j % self.intv == 0 and j != depths[i] - 1),
                            ) for j in range(depths[i])
            ])
            self.blocks.append(_block)
            ii += depths[i]        # PEG for each resolution feature map
        self.pos_blocks = nn.LayerList(
            [PEG(ed) for ed in embed_dims]
        )

        self.norm = norm_layer(embed_dims[-1])
        self.head = nn.Linear(embed_dims[-1], num_classes) if num_classes > 0 else nn.Identity()
        self.apply(self._init_weights)    def _init_weights(self, m):
        tn = nn.initializer.TruncatedNormal(std=.02)
        ones = nn.initializer.Constant(1.0)
        zeros = nn.initializer.Constant(0.0)
        kaiming = nn.initializer.KaimingNormal()        if isinstance(m, nn.Linear):
            tn(m.weight)            if m.bias is not None:
                zeros(m.bias)        elif isinstance(m, (nn.LayerNorm, nn.BatchNorm2D)):
            zeros(m.bias)
            ones(m.weight)        elif isinstance(m, nn.Conv2D):
            kaiming(m.weight)            if m.bias is not None:
                zeros(m.bias)    def forward_blocks(self, x):
        for i in range(len(self.depths)):            for j, blk in enumerate(self.blocks[i]):                if j % self.intv == 0 and j != len(self.blocks[i]) - 1:                    # generate new offset
                    x = self.pos_blocks[i](x)
                    x, offset = blk(x)                else:                    # forward with old offset
                    x = blk(x, offset)

        B, H, W, C = x.shape
        x = x.reshape((B, -1, C))        return x    def forward(self, x):
        """
        x: [B, 3, H, W]
        """
        x = self.patch_embed(x)

        x = self.forward_blocks(x)

        x = self.norm(x)
        y = self.head(x.mean(1))        return y
登录后复制
   
In [17]
num_classes = 10def ActivexTiny():
    depths = [2, 2, 4, 2]
    mlp_ratios = [4, 4, 4, 4]
    embed_dims = [64, 128, 320, 512]
    share_dims = [2, 4, 4, 8]
    model = ActiveMLP(depths=depths, embed_dims=embed_dims, mlp_ratios=mlp_ratios, share_dims=share_dims, intv=2, num_classes=num_classes)    return modeldef ActiveTiny():
    depths = [2, 3, 10, 3]
    mlp_ratios = [4, 4, 4, 4]
    embed_dims = [64, 128, 320, 512]
    share_dims = [2, 4, 4, 8]
    model = ActiveMLP(depths=depths, embed_dims=embed_dims, mlp_ratios=mlp_ratios, share_dims=share_dims, intv=2, num_classes=num_classes)    return modeldef ActiveSmall():
    depths = [3, 4, 18, 3]
    mlp_ratios = [8, 8, 4, 4]
    embed_dims = [64, 128, 320, 512]
    share_dims = [2, 4, 4, 8]
    model = ActiveMLP(depths=depths, embed_dims=embed_dims, mlp_ratios=mlp_ratios, share_dims=share_dims, intv=6, num_classes=num_classes)    return modeldef ActiveBase():
    depths = [3, 8, 27, 3]
    mlp_ratios = [8, 8, 4, 4]
    embed_dims = [64, 128, 320, 512]
    share_dims = [2, 4, 4, 8]
    model = ActiveMLP(depths=depths, embed_dims=embed_dims, mlp_ratios=mlp_ratios, share_dims=share_dims, intv=6, num_classes=num_classes)    return modeldef ActiveLarge():
    depths = [3, 4, 24, 3]
    mlp_ratios = [4, 4, 4, 4]
    embed_dims = [96, 192, 384, 768]
    share_dims = [2, 4, 4, 8]
    model = ActiveMLP(depths=depths, embed_dims=embed_dims, mlp_ratios=mlp_ratios, share_dims=share_dims, intv=6, num_classes=num_classes)    return model
登录后复制
   

2.3.4 模型的参数

In [ ]
model = ActivexTiny()
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

In [ ]
model = ActiveTiny()
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

In [ ]
model = ActiveSmall()
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

In [ ]
model = ActiveBase()
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

In [ ]
model = ActiveLarge()
paddle.summary(model, (1, 3, 224, 224))
登录后复制
   

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

2.4 训练

In [23]
learning_rate = 0.001n_epochs = 100paddle.seed(42)
np.random.seed(42)
登录后复制
   
In [ ]
work_path = 'work/model'# ActiveMLP-xTinymodel = ActivexTiny()

criterion = LabelSmoothingCrossEntropy()

scheduler = paddle.optimizer.lr.CosineAnnealingDecay(learning_rate=learning_rate, T_max=50000 // batch_size * n_epochs, verbose=False)
optimizer = paddle.optimizer.Adam(parameters=model.parameters(), learning_rate=scheduler, weight_decay=1e-5)

gate = 0.0threshold = 0.0best_acc = 0.0val_acc = 0.0loss_record = {'train': {'loss': [], 'iter': []}, 'val': {'loss': [], 'iter': []}}   # for recording lossacc_record = {'train': {'acc': [], 'iter': []}, 'val': {'acc': [], 'iter': []}}      # for recording accuracyloss_iter = 0acc_iter = 0for epoch in range(n_epochs):    # ---------- Training ----------
    model.train()
    train_num = 0.0
    train_loss = 0.0

    val_num = 0.0
    val_loss = 0.0
    accuracy_manager = paddle.metric.Accuracy()
    val_accuracy_manager = paddle.metric.Accuracy()    print("#===epoch: {}, lr={:.10f}===#".format(epoch, optimizer.get_lr()))    for batch_id, data in enumerate(train_loader):
        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)

        logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = accuracy_manager.compute(logits, labels)
        accuracy_manager.update(acc)        if batch_id % 10 == 0:
            loss_record['train']['loss'].append(loss.numpy())
            loss_record['train']['iter'].append(loss_iter)
            loss_iter += 1

        loss.backward()

        optimizer.step()
        scheduler.step()
        optimizer.clear_grad()

        train_loss += loss
        train_num += len(y_data)

    total_train_loss = (train_loss / train_num) * batch_size
    train_acc = accuracy_manager.accumulate()
    acc_record['train']['acc'].append(train_acc)
    acc_record['train']['iter'].append(acc_iter)
    acc_iter += 1
    # Print the information.
    print("#===epoch: {}, train loss is: {}, train acc is: {:2.2f}%===#".format(epoch, total_train_loss.numpy(), train_acc*100))    # ---------- Validation ----------
    model.eval()    for batch_id, data in enumerate(val_loader):

        x_data, y_data = data
        labels = paddle.unsqueeze(y_data, axis=1)        with paddle.no_grad():
          logits = model(x_data)

        loss = criterion(logits, y_data)

        acc = val_accuracy_manager.compute(logits, labels)
        val_accuracy_manager.update(acc)

        val_loss += loss
        val_num += len(y_data)

    total_val_loss = (val_loss / val_num) * batch_size
    loss_record['val']['loss'].append(total_val_loss.numpy())
    loss_record['val']['iter'].append(loss_iter)
    val_acc = val_accuracy_manager.accumulate()
    acc_record['val']['acc'].append(val_acc)
    acc_record['val']['iter'].append(acc_iter)    print("#===epoch: {}, val loss is: {}, val acc is: {:2.2f}%===#".format(epoch, total_val_loss.numpy(), val_acc*100))    # ===================save====================
    if val_acc > best_acc:
        best_acc = val_acc
        paddle.save(model.state_dict(), os.path.join(work_path, 'best_model.pdparams'))
        paddle.save(optimizer.state_dict(), os.path.join(work_path, 'best_optimizer.pdopt'))print(best_acc)
paddle.save(model.state_dict(), os.path.join(work_path, 'final_model.pdparams'))
paddle.save(optimizer.state_dict(), os.path.join(work_path, 'final_optimizer.pdopt'))
登录后复制
   

【AAAI 2023】ATMNet:使用主动Token混合的MLP架构 - php中文网        

2.5 结果分析

In [25]
def plot_learning_curve(record, title='loss', ylabel='CE Loss'):
    ''' Plot learning curve of your CNN '''
    maxtrain = max(map(float, record['train'][title]))
    maxval = max(map(float, record['val'][title]))
    ymax = max(maxtrain, maxval) * 1.1
    mintrain = min(map(float, record['train'][title]))
    minval = min(map(float, record['val'][title]))
    ymin = min(mintrain, minval) * 0.9

    total_steps = len(record['train'][title])
    x_1 = list(map(int, record['train']['iter']))
    x_2 = list(map(int, record['val']['iter']))
    figure(figsize=(10, 6))
    plt.plot(x_1, record['train'][title], c='tab:red', label='train')
    plt.plot(x_2, record['val'][title], c='tab:cyan', label='val')
    plt.ylim(ymin, ymax)
    plt.xlabel('Training steps')
    plt.ylabel(ylabel)
    plt.title('Learning curve of {}'.format(title))
    plt.legend()
    plt.show()
登录后复制
   
In [26]
plot_learning_curve(loss_record, title='loss', ylabel='CE Loss')
登录后复制
       
<Figure size 1000x600 with 1 Axes>
登录后复制
               
In [27]
plot_learning_curve(acc_record, title='acc', ylabel='Accuracy')
登录后复制
       
<Figure size 1000x600 with 1 Axes>
登录后复制
               
In [28]
import time
work_path = 'work/model'model = ActivexTiny()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
aa = time.time()for batch_id, data in enumerate(val_loader):

    x_data, y_data = data
    labels = paddle.unsqueeze(y_data, axis=1)    with paddle.no_grad():
        logits = model(x_data)
bb = time.time()print("Throughout:{}".format(int(len(val_dataset)//(bb - aa))))
登录后复制
       
Throughout:615
登录后复制
       
In [29]
def get_cifar10_labels(labels):
    """返回CIFAR10数据集的文本标签。"""
    text_labels = [        'airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog',        'horse', 'ship', 'truck']    return [text_labels[int(i)] for i in labels]
登录后复制
   
In [30]
def show_images(imgs, num_rows, num_cols, pred=None, gt=None, scale=1.5):
    """Plot a list of images."""
    figsize = (num_cols * scale, num_rows * scale)
    _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
    axes = axes.flatten()    for i, (ax, img) in enumerate(zip(axes, imgs)):        if paddle.is_tensor(img):
            ax.imshow(img.numpy())        else:
            ax.imshow(img)
        ax.axes.get_xaxis().set_visible(False)
        ax.axes.get_yaxis().set_visible(False)        if pred or gt:
            ax.set_title("pt: " + pred[i] + "\ngt: " + gt[i])    return axes
登录后复制
   
In [31]
work_path = 'work/model'X, y = next(iter(DataLoader(val_dataset, batch_size=18)))
model = ActivexTiny()
model_state_dict = paddle.load(os.path.join(work_path, 'best_model.pdparams'))
model.set_state_dict(model_state_dict)
model.eval()
logits = model(X)
y_pred = paddle.argmax(logits, -1)
X = paddle.transpose(X, [0, 2, 3, 1])
axes = show_images(X.reshape((18, 224, 224, 3)), 1, 18, pred=get_cifar10_labels(y_pred), gt=get_cifar10_labels(y))
plt.show()
登录后复制
       
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
Clipping input data to the valid range for imshow with RGB data ([0..1] for floats or [0..255] for integers).
登录后复制
       
<Figure size 2700x150 with 18 Axes>
登录后复制
               

以上就是【AAAI 2023】ATMNet:使用主动Token混合的MLP架构的详细内容,更多请关注php中文网其它相关文章!

最佳 Windows 性能的顶级免费优化软件
最佳 Windows 性能的顶级免费优化软件

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

下载
来源:php中文网
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
最新问题
开源免费商场系统广告
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板
关于我们 免责申明 意见反馈 讲师合作 广告合作 最新更新 English
php中文网:公益在线php培训,帮助PHP学习者快速成长!
关注服务号 技术交流群
PHP中文网订阅号
每天精选资源文章推送
PHP中文网APP
随时随地碎片化学习

Copyright 2014-2025 https://www.php.cn/ All Rights Reserved | php.cn | 湘ICP备2023035733号